Skip to main content
  • Skip to main content
  • Site Map
  • T
  • T
-A A +A
Home
School of Physical Sciences
ଜାତୀୟ ବିଜ୍ଞାନ ଶିକ୍ଷା ଏବଂ ଗବେଷଣା ପ୍ରତିଷ୍ଠାନ
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
  • People
    • Faculty
    • Staff
      • Administrative Staff
      • Scientific Officers
      • Technician
    • Students
      • Integrated M.Sc Students
      • Ph.D.
      • Int. Msc-phd
      • Postdoc
      • Alumni
        • Alumni PhD
        • Alumni M.Sc
        • Alumni M.Sc PhD
        • Alumni Postdoc
      • Summer students
    • Visitors
  • Research
    • Fields of Research
    • Publications
    • Facilities
    • Projects
    • PhD Thesis
    • Master Thesis
  • Teaching
    • Under Graduate Courses
      • UG Core Courses
      • UG Elective Courses
      • Minor and Major in Physics
    • PhD Course/Program
      • PG Core Courses
      • PG Elective Courses
    • Integrated Msc-Phd Programme
    • Teaching Laboratory Manuals
      • Int. MSc
      • Int. MSc-PhD
    • Facilities
  • Activities
    • Upcoming
      • Seminar/Colloquium
      • Conference/Symposm/Worksp
      • Meeting
      • Outreach
    • Past
      • Conference/Symposm/Worksp
      • Meeting
      • Outreach Program
      • Seminar/Colloquium
  • Committees
  • Gallery
  • Events calendar
  • Contact

Breadcrumb

  1. Home
  2. P472 Experimental High Energy Physics

P472 Experimental High Energy Physics

Course Code
P472
Credit
8
Prerequisite

P206 (Quantum Mechanics I), P304 (Special Theory of Relativity)

Total Hours
42 Lectures + 14 Tutorials
Outcome of the Course
This course teaches the students important concepts and methods in experimental high energy physics, with the aim to build their background for future research work in this area.
Approval
UG-Elective
Syllabus
  • The interaction of high-energy particles with matter: specific applications related to EHEP. Relativistic kinematics: Detailed derivation of kinematic variables and their transformations whenever needed. Decay kinematics. Rapidity, pseudo-rapidity, space-like and time-like. Some examples where relativistic kinematics play important role for understanding of data.
  • Detectors in High Energy physics: general concept of building a HEp experiment, coverage and option
  • Gas detectors; Semiconductor detector; Scintillator and Cerenkov detectors Specific to EHEP
  • Calorimeter and Pre-shower detectors: principle of electromagnetic and hadronic shower generation. Detector Simulation: need of simulation, various techniques, MC, some general
  • Concepts. Data analysis in HEp: general approach of data cleanup, calibration, track reconstruction, reconstruction of events Error analysis in EHEp. Computing in EHEp: Basics of OO programming using C++, few applications in EHEpdata analysis.
Reference Books
  1. Relativistic Kinematics; a guide to the kinematic problems of High Energy physics by R.Hagedorn
  2. The Experimental Foundations of particle physics by R. N.Cahn and G. Goldhaber
  3. Techniques for nuclear and particle physics experiments: a How to approach by W. R.Leo (Springer)
  4. Experimental Techniques in Hugh Energy Nuclear and Particle physics by T. Ferbel (WorldScientific)
  5. Introduction to Experimental particle physics by R. C. Fernow
  6. Data Reduction and Error analysis for the physical sciences by P.Bevington and D. K. Robinson
  7. Data analysis Techniques for High Energy physics by R. Frunwirth, M. Regler, R. K. Bock and H. Grote
© 2023 School of Physical Sciences, NISER, All Rights Reserved.