Materials screening

1. Experiments are time consuming, expensive and uncertain
- Each sample may take ~2 days to ~2 months for synthesis
« High-purity elements can be very expensive

2. High throughput experiments: still expensive
3. High throughput (DFT) computations
« Expensive for hundreds of thousands of materials

4. Here comes machine learning Materials from Databases
- Hierarchical filtering/screening of materials .-
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Applications of ML in materials

A few hand-picked examples
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ABSTRACT

It is shown that even the relatively small amount of available materials data can be innovatively utilized
to explore the materials space in order to identify materials with desired target properties. As an example
of this, data from the novomag and Novamag databases are used to train random forest and neural network
models which can predict thermodynamic stability, and magnetic properties of materials. Performance of these
models are tested thoroughly and are found satisfactory. These models are subsequently used to interpolate
within the above databases, and to extrapolate to parts of the materials composition and structure space not
covered in these databases, to identify stable, magnetic materials that have large saturation magnetization
and large easy-axis anisotropy. Screening 686 materials via the trained models, and subsequently performing
first principles calculations, 21 new candidate materials for rare earth free permanent magnet are identified.
Some of these materials have anisotropy constants as large as 5 and 6 MJ m~3, larger than that of the most
widely used permanent magnet Nd,Fe,;,B. This simple approach can be used to screen materials with other
functionalities in future.
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Example problem

Computer and related devices
Household appliances
Industrial/large scale equipments
Strategic applications

Most use rare earth elements Nd, Sm
e Supply issues, geopolitical sensitivity
e Most widely used Nd,Fe,B

Not many to use at room temperature
 Need large magnetization, anisotropy

e \ery few FM magnets with 7. > 600 K
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Example problem

e Discover/design magnetic materials with RE elements, satisfying

Discover/design rare earth free strong
permanent magnets

Stable, Ms>1T,Ki>1 MJ/m3, T¢ >
600 K, low cost, easy manufacturability

Define the problem

Figures of merit

Existing, Combinatorial, Heuristics —>

Materials to search screening
through
Better ways? Machine learnning
A
0 MAE K, > 0: uniaxial anisotropy

AFE = Kl SiIl2 0 K, < 0: planar anisotropy

Hexagonal closed structure (HCP) Calculating K via DFT is very expensive and challenging
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Paucity of data
Particularly data on magnetic properties

e Data from public databases

e NovoMag

DFT generated databases for magnetic materials
e Novamag

\ 843 unstable [N/

1131 easy-plane/easy-axis 695 anisotropy
info given energy (K,) given



Battery of ML models

Materials|—

Anisotropy energy
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Features used

Table 2: Complete list of features for all the machine learning tasks

Features

Symbol

(1) { L? stoichiometry norm(p=2,3)
stoichiometry entropy
composition-weighted atomic number(Z)
composition-weighted electronegativity(e)

I) (:()mpos?t%()n—wo%ghtc(l period(P)
composition-weighted group(G)
composition-weighted

number(v)

(1) Sine matrix eigenvalues

valence

electron

L* L°

Se

Z, |0Z|, Mo(Z)

e |5(| Mo(e)
P, |6P|, Mo(P)

G. 0G|, Mo(G)
v, |0v|, Mo(v)

ESM(i =1 —50)

total
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Model performance

Stability classifier

h¢oer, Predictor

0.91 095 093

0.910 0.93 096 0.95

0.86 0.90 094 0.92

2

0.84 0.92

0.89 0.93 093 0.93 0.85 0.94

Anisotropy classifier
st sy rcon sl 1

0.78 0.89 0.83 0.68 0.68 0.68 0.68

0.82 0.86 0.84 - 0.75 0.61 073 066
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Understanding the models

(a) stable-unstable classifier (b) magnetic-nonmagnetic classifier

(a) (b)
RF(up) RF RF(up)
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Unstable Stable Unstable Stable NM Magnetic NM Magnetic
Predicted label Predicted label Predicted label Predicted label

In RF(up), the minority class is up-sampled

(@) Unstable materials: misclassified by RF 36%; misclassified by RF(up) 29%.
(b) Non-magnetic materials: misclassified by RF 39%; by RF(up) 29%

Significantly reduces the misclassification rates.
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Understanding the models
(c) easy-axis vs easy-plane (b) K, <1vs K, > 1

In RF(up), the minority class is up-sampled
(c) easy-plane: misclassified by RF 76%; misclassified by RF(up) 52%.
(c) high K| materials: misclassified by RF 46%; by RF(up) 40%; by RF(ROC) 28%.

Significantly reduces the misclassification rates.

(c) (d)
RF(up) RF(up) RF(ROC)
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(a) A, regression

Predicted h¢orm (MmeV atom™1)
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R? =0.85

-1000 =500
DFT h¢orm (meV atom™1)

(b) M, regression

(b)

o
—
()]

0.05 7

Predicted Ms (g A~3)
o
o

0.00 -
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
DFT Mg (pg A73)

. (@) roughly uniform performance over entire range

(b) better performance for larger M
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Machine Learning Model Performances

Performance of Regression Models

Quantity R2 score MAE Unit Data Set Size
htorm 0.86 0.057 eV/atom 3631
Ms 0.85 0.15 Tesla 2963
Performance of Classifier Models * Data Set Sizes
(Based on F1 score)
h¢orm Prediction Stable-Uns i © 4,474
o Magnetic-NM 0.93 3,631
M prediction ° .
Easy-axis vs Easy-Plane 0.84 1,131

High vs Low Magnetic Anisotropy

Random Classifier

0.38

0 0.25

0.5

0.75

1250

2500

3750

5000



Putting the models to work

Complete set of
stable materials

(€)

Screening unexplored
parts of the database

Set of ferromagnets
Large magnetization

(F)

Uniaxial anisotropy
materials (U)
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ML-Accelerated Material Screening

Exploration-1 : Searching unexplored parts Exploration-2 : Extrapolating beyond
of existing data existing data

Stable (hform<0) and hlgh Ms
(>1T) materials but
anisotropy is unknown.

Pass through stability classifier &

762
Hexagonal Crystals Calculation Load
T T " _312
Easy-Axis Anisotropy :
Predicted to th ML I14 cgvmepsutatio(r)m (':ime
have high : ‘ ! : , .

¥

Predicted to have high

Theory

0

computation time
| | | i Density Functional
100 200 300 400 Theory
12 materials have

easy-axis J

anisotropy and 10

materials have _ 11 materials satisfied all
K, > 1MJ m> ML-accelerated approach delivers the design targets.
more than an order-of-magnitude

speedup !




Interesting materials
Obtained from DFT

From the data set
FeioTaz -37 1.63 6.14 53
Fei2Tas -113 1.08 5.38 45
New materials
FeisN2 -30.2 2.20 0.72
FeisMnsN2| -356 2.09 1.47 108
FeizMniN2| -468 1.99 2.19 139 _

Fe lzTazo
-0.05

FesTag [e)

FejpTay o © /FesTa

-0.10 FegTar o

-0.156

Formation energy (eV atom™)

-0.25
0.0 0.2 0.4 0.6 0.8 1.0

Fe fraction in Fe-Ta
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How about 7.2

Data ?

- No theory-generated database for 7.

- Experimental data
1200 1

- Multiple values for the same material
- Structure not always reported 1000

« Data source

800

- AtomWork, Springer Materials, Handbook of Magnetic
Materials (Nelson & Sanvito, PRMat3-104405, Halder et
al. Phys. Rev. Appl. 14, 034024)

- Database created by parsing published literature using Y.
NLP models (Court & Cole, Sc. Data DOI: 10.1038/ 4001 i
sdata.2018.111) '

« How much can be done with out structure information? | .% -';:'
o..z

Exp. Te (K)

6001 =

* Nelson-Sanvito, composition weighted chemical i .
features 0 200 400 600 800 1000 1200

Pred. T (K)
- RF model: R? = 0.87; MAE = 57 K.
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