Ridge regression

* Shrinkage methods
* Ridge Regression

« Model: {w;}’s minimize the residual sum of squares:

n p 14
. _ . 2 2
mln{wi}z (y; — Wy — Zwl-xl-)2+ az wl.2 =ming,, | |[Xw—y|[;+al|w]].
i=1 j=1 i=1

* « obtained using Cross-Validation.

Shrinkage penalty applied only on the coefficients w;, i = 1...p, and not on the intercept w,.

Why RR improve over Least Squares (linear regression)?

e Bias-variance trade-off

« Small a leads to large variance; large a reduces variance, increases bias

RR fits models involving all the features; none of the coefficients is zero

* Even in cases where some of the features may be irrelevant to the target

LASSO can estimate some coefficients to be exactly zero

* Thus it performs feature selection, yields sparse models
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Understanding difference between LASSO & RR

e Alternative formulation for RR and LASSO

n p P
_ RR:ming, , Z (y; —wp — Z w.x;)> subject to Z w? <s,
i=1 j=1 i=1

n P P
_ LASSO miny,,, 2 (v, — Wy — Z w.x;)> subject to Z |w;| <s.

 For every a there is a value of s such that these conditions yield the same w;s
for RR and LASSO as per the equations on the previous two slides.

* 5 is a budget for the coefficients. For p = 2

« LASSO: [w; |+ |w,y| <55 RRiw?4+w?<s

 LASSO better when a small number of features determine the outcome

* RR depends when it depends on a large number of features
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Tree based methods
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* Regression Trees
- Salary a function of number of hits & number of years

* A series of splitting rules
- First along the Years axis; then along the Hits axis
- R, = {X| Years < 4.5}; R, = {X| Years > 4.5, Hits < 117.5};
R, = {X|Years > 4.5, Hits > 117.5}.

- R|, R,, R; called terminal nodes or leaves
 Points at which feature space is split called internal nodes
* In this example, Years is more important in determining salary
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» General idea of building a Regression Tree
1.Divide the feature space into J distinct, non-overlapping regions, Ry, ...R;.
2.For every observation in R,, prediction is the simple mean of the training
observations in R.,.

- The regions could have any shape.

- But for convenience, they are chosen to be high dimensional boxes so that

J
RSS = ) ) (y,— ij)z is minimized

- Creating trees
* Recursive binary splitting

- Top-down approach: starts at the top of the tree, and successively splits the feature
space

- Choose the feature X] and the value s such that splitting the space into regions

{X|X; < s} and {X|X; > s} leads to the greatest reduction in RSS.
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* Recursive binary splitting leads to complex trees, overfits training data

« Smaller tree, fewer splits may work better for test set: lower variance at the cost

of a little higher bias
e Tree pruning
« Grow a very large tree
* Prune it to a subtree
« What is the best subtree? One that gives the lowest test error

e Can be determined by cross validation
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» Classification trees
« Same idea for splitting along features, and creating regions/boxes

 What to minimize?

K
. Giniindex G = mek(l — p,.+); K is number of classes; p, . number of
k=1
training examples in the m-th region from the k-th class, OR

K
. Entropy S=- mek logpmk
k=1

* In general, decision trees have large variance.

» Take a data set, split into two halves, train to decision trees; these could be very
different

e How to reduce variance?

 Remember bootstrapping
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* Averaging over many models, variance can be reduced

« If predictions of a quantity f by N tress trained on N different bootstrapped data
sets are f1(x), f?(x), ..., N (x), final result is the average

A 1 & &
o JbagX) = N Z}fl(x)-

* This is called bagging, as applied to regression models

* For classification models, record prediction from each model, take a majority
vote, or average of classification probability
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Random forest

« Small tweak over bagging which decor relates the trees

Trees are correlated, particularly if a few of the features dominate splitting

Variance reduction by 1/N applies only to independent random variates, not
correlated ones. Therefore, attempt to decorrelate the trees.

Each time, a random sample of m features is chosen as candidates for split

. Typically, m =~ /p; most of the features are not even considered for a split

at each step

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *,
criterion='squared_error', max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0,
max_Lleaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True,
oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0, max_samples=None,

monotonic_cst=None) [source]
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