Ridge regression

- Shrinkage methods
 - Ridge Regression
 - Model: $\{w_i\}$'s minimize the residual sum of squares:

$$\min_{\{w_i\}} \sum_{i=1}^n (y_i - w_0 - \sum_{j=1}^p w_i x_i)^2 + \alpha \sum_{i=1}^p w_i^2 \equiv \min_{\{w_i\}} ||Xw - y||_2^2 + \alpha ||w||_2^2.$$

- α obtained using Cross-Validation.
- Shrinkage penalty applied only on the coefficients w_i , i = 1...p, and not on the intercept w_0 .
- Why RR improve over Least Squares (linear regression)?
 - Bias-variance trade-off
 - Small α leads to large variance; large α reduces variance, increases bias
- RR fits models involving all the features; none of the coefficients is zero
 - Even in cases where some of the features may be irrelevant to the target
- LASSO can estimate some coefficients to be exactly zero
 - Thus it performs *feature selection*, yields *sparse models*

Understanding difference between LASSO & RR

Alternative formulation for RR and LASSO

• RR:
$$\min_{\{w_i\}} \sum_{i=1}^n (y_i - w_0 - \sum_{j=1}^p w_i x_i)^2$$
 subject to $\sum_{i=1}^p w_i^2 \le s$,

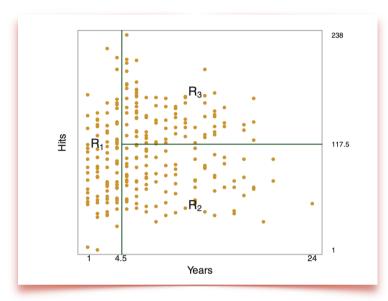
• LASSO
$$\min_{\{w_i\}} \sum_{i=1}^n (y_i - w_0 - \sum_{j=1}^p w_i x_i)^2$$
 subject to $\sum_{i=1}^p |w_i| \le s$.

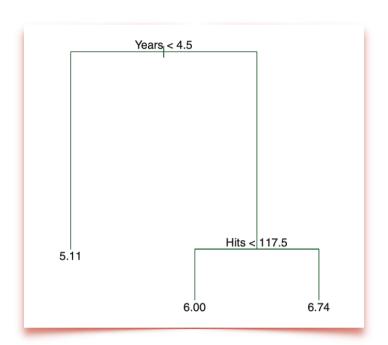
- For every α there is a value of s such that these conditions yield the same w_i s for RR and LASSO as per the equations on the previous two slides.
- s is a **budget** for the coefficients. For p=2

• LASSO: $|w_1| + |w_2| \le s$; RR: $w_1^2 + w_2^2 \le s$

- LASSO better when a small number of features determine the outcome
- RR depends when it depends on a large number of features

Tree based methods





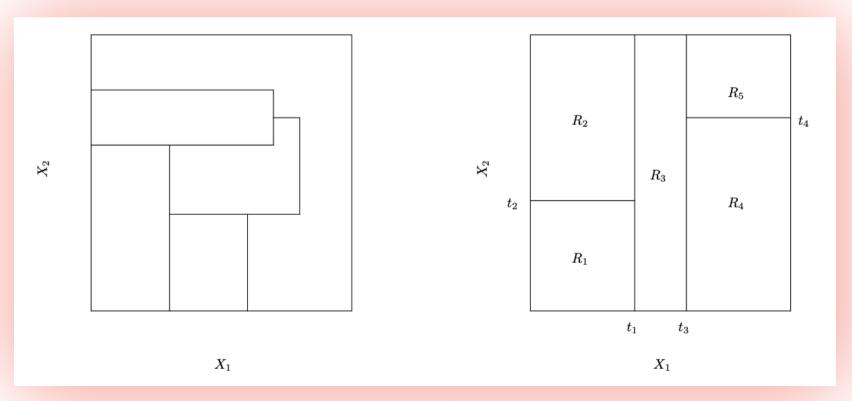
- Regression Trees
 - Salary a function of number of hits & number of years
 - A series of splitting rules
 - First along the **Years** axis; then along the **Hits** axis
 - $R_1 = \{X \mid \text{Years} < 4.5\}; R_2 = \{X \mid \text{Years} \ge 4.5, \text{Hits} < 117.5\};$ $R_2 = \{X \mid \text{Years} \ge 4.5, \text{Hits} \ge 117.5\}.$
 - R_1 , R_2 , R_3 called **terminal nodes** or **leaves**
 - Points at which feature space is split called **internal nodes**
 - In this example, **Years** is more important in determining salary

- General idea of building a Regression Tree
 - 1. Divide the feature space into J distinct, non-overlapping regions, $R_1, \ldots R_J$.
 - 2. For every observation in R_i , prediction is the **simple mean** of the **training** observations in R_i .
- The regions could have any shape.
- But for convenience, they are chosen to be high dimensional boxes so that

. RSS =
$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$
 is minimized

- Creating trees
 - Recursive binary splitting
 - Top-down approach: starts at the top of the tree, and successively splits the feature space
 - Choose the feature X_j , and the value s such that splitting the space into regions $\{X \mid X_j < s\}$ and $\{X \mid X_j \geq s\}$ leads to the greatest reduction in RSS.

- Recursive binary splitting leads to complex trees, overfits training data
- Smaller tree, fewer splits may work better for test set: lower variance at the cost of a little higher bias
- Tree pruning
 - Grow a very large tree
 - Prune it to a subtree
 - What is the best subtree? One that gives the lowest test error
 - Can be determined by cross validation

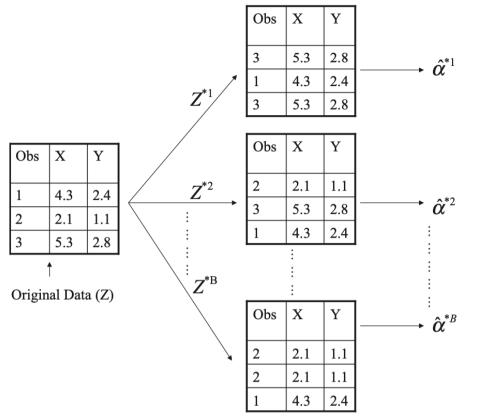


- Classification trees
 - Same idea for splitting along features, and creating regions/boxes
 - What to minimize?
 - Gini index $G = \sum_{k=1}^K p_{mk} (1-p_{mk})$; K is number of classes; p_{mk} number of

training examples in the m-th region from the k-th class, OR

• Entropy
$$S = -\sum_{k=1}^{K} p_{mk} \log p_{mk}$$

- In general, decision trees have large variance.
 - Take a data set, split into two halves, train to decision trees; these could be very different
 - How to reduce variance?
- Remember bootstrapping



- Draw N training samples of size n from the original training data set
- Consider N independent random variables Z_1, Z_2, \ldots, Z_N each with variance σ^2

$$\bar{Z} = \frac{1}{N}(Z_1 + Z_2 + \ldots + Z_N) \text{ is a}$$
 random variable with variance σ^2/N .

- Averaging over many models, variance can be reduced
- If predictions of a quantity f by N tress trained on N different bootstrapped data sets are $\hat{f}^1(x)$, $\hat{f}^2(x)$, ..., $\hat{f}^N(x)$, final result is the average

$$\hat{f}_{\text{bag}}(x) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}^{i}(x).$$

- This is called **bagging**, as applied to regression models
- For classification models, record prediction from each model, take a majority vote, or average of classification probability

- Random forest
 - Small tweak over bagging which decor relates the trees
- Trees are correlated, particularly if a few of the features dominate splitting
- Variance reduction by 1/N applies only to independent random variates, not correlated ones. Therefore, attempt to *decorrelate* the trees.
- Each time, a random sample of m features is chosen as candidates for split
 - Typically, $m \approx \sqrt{p}$; most of the features are not even considered for a split at each step

```
class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *,
    criterion='squared_error', max_depth=None, min_samples_split=2,
    min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0,
    max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True,
    oob_score=False, n_jobs=None, random_state=None, verbose=0,
    warm_start=False, ccp_alpha=0.0, max_samples=None,
    monotonic_cst=None)

[source]
```