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Predicting materials properties

Using trained ML models

Searching materials space

using generative AI

ML force fields for fast

Simulations at quantum accuracy

Accelerating materials characterization

Fast interpretation of XRD, XPS spectra

Major areas of use 



What are property prediction models?
•Regression models


• Predicting properties that take continuous values

• Formation energy (or heat of formation ), band gap, saturation 
magnetization ( ), elastic constants, electronic thermal conductivity, 
lattice thermal conductivity.


• Classification models

• Models for finding class/category of materials


•Stable or unstable? Magnetic or non-magnetic? Ferromagnetic or 
anti-ferromagnetic? All examples of binary classification. 


•Find hidden pattern in data: unsupervised model, clustering 
‘similar’ materials; ideas of graph theory may be useful.

hform
Ms
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• Experiments:  Very expensive, time-consuming, uncertain

• High throughput experiments, expensive still, uncertain


• Predict material properties from theory


• DFT+ methods, High throughput: better, still expensive

• Can we bypass the calculations?


Leverage available data for Machine Learning

OR

Screening materials
What can we do with property prediction models?

Slow pace of materials discovery and deployment 

Trial-and-error experimentation 

Giant magnetoresistance materials (1988) 
Data-storage storage (1997) 

Li-ion battery tested in 1970s 
Widely used only in 1990s 

Still some way before widely used for mobility 

Materials Genome Initiative (MGI, 2011) 
Envisaged accelerated materials discovery and  

deployment



• Regression model performance metrics 

• Quality of fit, 


• Correlation 


• Mean absolute error, MAE 


• Mean square error 


MSE  

R2 = 1 −
∑i [Yi − ̂Yi]2

∑i [Yi − Ȳi]2

r = ⟨Yi, ̂Yi⟩

=
1
N ∑

i

|Yi − ̂Yi |

=
1
N ∑

i

(Yi − ̂Yi)2

• Classification model performance metrics 

• 


• 


• 


•

Accuracy =
TP + TN

N

Precision =
TP

TP + FP
Recall =

TP
TP + FN

f1 score =
2 * Precision * Recall

Precision + Recall

Confusion matrix

Model training and performance

Train ML models to predict properties 
Leveraging available data

5

Material property 



We get the best estimate

Y = f( ⃗X ) + ϵ = f(X1, X2, …, Xn) + ϵ

̂Y = ̂f(X1, X2, …, Xn) + ϵ



Example
Confusion matrix for a model predicting loan default

6

True default status

Predicted 
default 
status

Yes No Total

Yes 81 23 104

No 252 9644 9896

Total 333 9667 10000

Accuracy = 


Precision = 0.78


Recall = 


81 + 9644
10000

= 0.97

81
104

=

81
333

= 0.24

f1 =
2 * Precision * Recall

Precision + Recall
= 0.37

• Classification model performance metrics 

• 


• 


• 


•

Accuracy =
TP + TN

N

Precision =
TP

TP + FP
Recall =

TP
TP + FN

f1 score =
2 * Precision * Recall

Precision + Recall



Definitions
• Formation energy or Heat of formation 


•                  


•   , extensive quantity

• ’s are the chemical potentials of the constituents in their ‘reference states’

• Reference state in a particular case depends on the conditions of synthesis

• If we take ref states to be isolated atomic states, we get cohesive energy 

• Can also be other states (bulk solid, molecular gas etc.)


• Energy convex hull

Convex hull is the smallest convex set that encloses all the points, forming a convex polygon.

•

hform = E(material) − ∑
i

μi(constituents in ref state)

hform(ABX3) = E(ABX3) − μA − μB − 3μX
μ

Ecoh
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A set  is convex if for any , the segment

 lies entirely in .

P p, q ∈ P
pq P

Convex hull in 2D

More examples:

https://in.mathworks.com/help/matlab/math/types-of-region-boundaries.html

https://in.mathworks.com/help/matlab/math/types-of-region-boundaries.html


Convex hull in binary phase space
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S. Mal & PS, JMMM (2024)



Convex hull in ternary phase space

Understanding the representation 
Equilateral triangle

Three corners: three elemental phases

Sides: binary phases

Points in the triangle: ternary phases

Three ways to measure composition  

Axis perpendicular to the plane of the triangle, plotting .

We are interested in materials with 


The planes (the small triangles in the figure), forming the 

outermost surface, constitute the convex hull


Materials on the hull most stable at that composition

Distance from the hull along  axis a measure of instability


hform

hform < 0

hform
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hfom = 0
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• Band gap for semiconductors/insulators in eV


• Fundamental gap, 


• Gap measured via ARPES is 


• Transport gap: 


 ;    .


• Optical gap, Tauc plots


• Gaps calculated via  DFT (LDA, GGA, HSE etc.)

• Gaps calculated via many-body methods such as GW


Emin
g = min{[E(N + 1) − E(N)] − [E(N) − E(N − 1)]}

Emin
g

σ(T ) ∼ e−Eg/2KBT ln(σ) ∼ − Etr
g +

1
2KBT

Do not mix different band gaps in your training data!! 

ARPES setup
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• Magnetization in ferromagnet: Magnetic moment when all moments in a material 
point in the same direction


• Units of saturation magnetization density in atomistic calculations 



• Expressed in Tesla in practical situations


• In Tesla, 


•  is permeability of free space, .

M in μB/Å3

Ms = μ0M = 11.649 T
μ0 μ0 = 4π × 10−7 N/Å2


