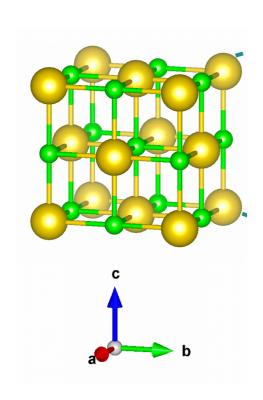
Predicting Material Properties using Invertible Real-Space Crystallographic Representation (IRCR)

Crystal Structure Representation



Any crystal structure can be represented by a repeating unit that tiles the entire 3D space. This repeating unit is called the unit cell.

The unit cell itself contains a number of atoms that are arranged inside of it.

Thus a material can be represented as

$$M = (A, X, L)$$
, where

A - atomic species $[a_1, a_2, ..., a_n]$

X - positions of each atom in the unit cell $[\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n}]$

L - three lattice vectors $[\overrightarrow{l_1}, \overrightarrow{l_2}, \overrightarrow{l_3}]$, can also be expressed by $[a, b, c, \alpha, \beta, \gamma]$

The positions can be either fractional coordinates or cartesian coordinates.

We can convert between fractional coordinates X and cartesian coordinates \tilde{X} as follows:

$$\tilde{X} = LX$$
 & $X = L^{-1}\tilde{X}$

As an example, if an atom has fractional coordinate $(0.25, 0.25, 0.5)^T$, then its cartesian coordinate will be $x = 0.25 \overrightarrow{l_1} + 0.25 \overrightarrow{l_2} + 0.5 \overrightarrow{l_3}$.

Crystal Structure File:

- 1. POSCAR
- 2. Crystallographic Information File (CIF)

NaCl POSCAR File

```
Na4 Cl4
1.0
   5.5881264354399347
                          0.0000000000000000
                                                 0.00000000000000003
  -0.0000000000000000
                          5.5881264354399347
                                                 0.0000000000000000
   0.00000000000000000
                          0.0000000000000000
                                                 5.5881264354399347
Na Cl
4 4
direct
   0.0000000000000000
                          0.00000000000000000
                                                 0.000000000000000 Na+
                          0.50000000000000000
                                                 0.500000000000000 Na+
   0.0000000000000000
                          0.0000000000000000
                                                0.500000000000000 Na+
   0.50000000000000000
   0.50000000000000000
                          0.50000000000000000
                                                 0.000000000000000 Na+
  0.0000000000000000
                          0.0000000000000000
                                                0.5000000000000000 Cl-
   0.0000000000000000
                          0.50000000000000000
                                                 0.000000000000000 Cl-
   0.50000000000000000
                          0.0000000000000000
                                                 0.0000000000000000 Cl-
                                                 0.5000000000000000 Cl-
   0.50000000000000000
                          0.50000000000000000
```

NaCl CIF File

```
# generated using pymatgen
data_NaCl
_symmetry_space_group_name_H-M
                                'P 1'
                5.58812644
_cell_length_a
cell length b 5.58812644
_cell_length_c
                5.58812644
_cell_angle_alpha
                   90.00000000
_cell_angle_beta
                  90.00000000
_cell_angle_gamma
                   90.00000000
_symmetry_Int_Tables_number
_chemical_formula_structural
                             NaCl
_chemical_formula_sum
                       'Na4 Cl4'
cell volume 174.50130186
cell formula units Z 4
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
  1 'x, y, z'
loop
 _atom_type_symbol
_atom_type_oxidation_number
 Na+ 1.0
  C1 - -1.0
loop_
 _atom_site_type_symbol
 _atom_site_label
atom site symmetry multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
 _atom_site_occupancy
  Na+ Na0 1 0.00000000
                          0.00000000
                                     0.00000000
      Na1 1 0.00000000
  Na+
                          0.50000000
                                     0.50000000
      Na2 1 0.50000000
                          0.00000000
                                     0.50000000
  Na+
  Na+ Na3 1 0.50000000
                          0.50000000
                                     0.00000000
 Cl- Cl4 1 0.00000000
                          0.00000000
                                     0.50000000
 Cl- Cl5 1 0.00000000
                          0.50000000
                                     0.00000000
  Cl- Cl6 1 0.50000000
                          0.00000000
                                     0.00000000
                          0.50000000 0.50000000
  Cl- Cl7 1 0.50000000
```

Feature Engineering: Composition-Weighted elemental properties, sine matrix elements or its eigenvalues, ACSF, SOAP etc.

But it is also possible to predict material properties with raw crystal structure data, where the neural network models will extract meaningful features from that raw data.

Invertible Real-Space Crystallographic Representation (IRCR)

Invertible: We can invert it back to CIF/ POSCAR with no information loss. Hence it is used in generative models.

Let us consider upto ternary materials.

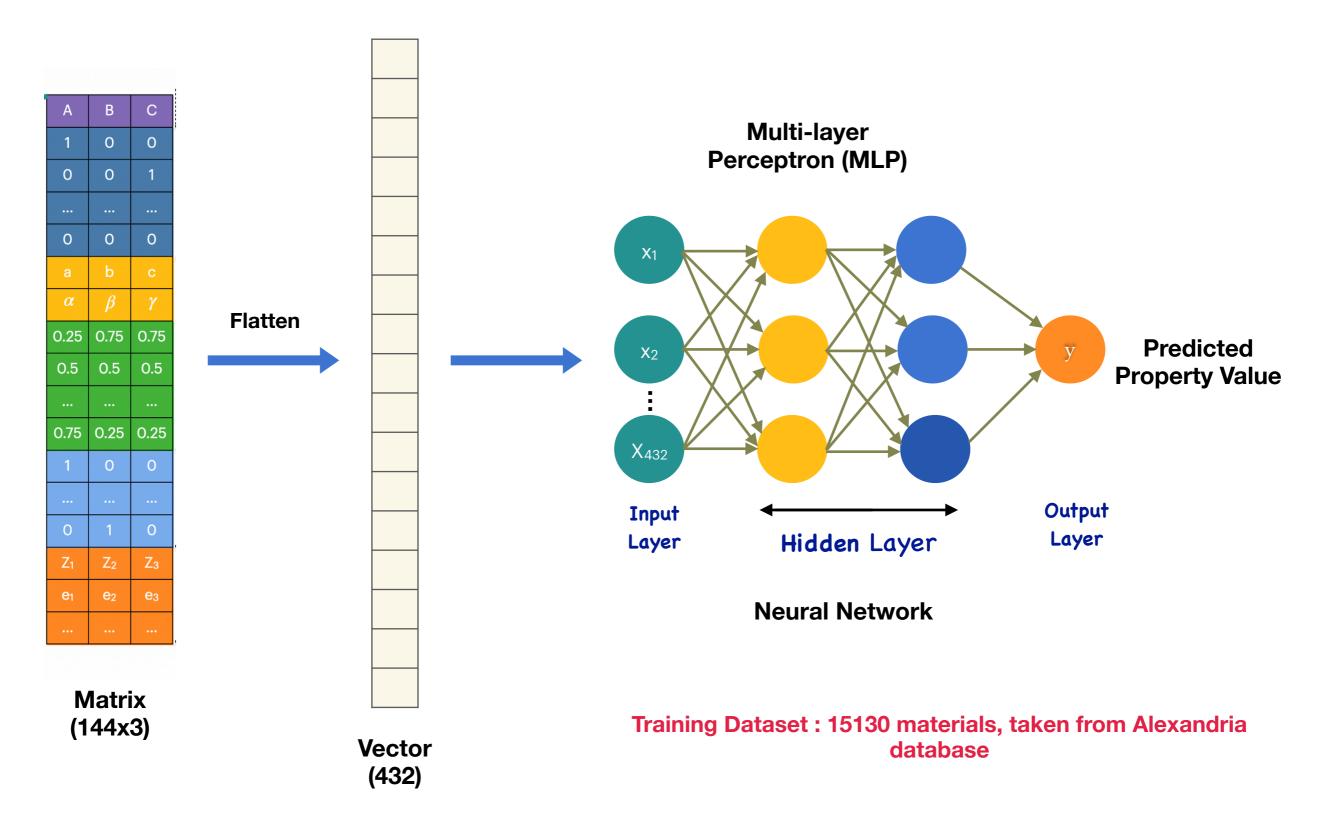
			<i>,</i>	
Α	В	С	Unique elements	
1	0	0		
0	0	1	E- element matrix	
		:	L- element matrix	
0	0	0		
а	b	С	I lettice metric	
α	β	γ	L- lattice matrix	
0.25	0.75	0.75	;······	
0.5	0.5	0.5	C- site coordinate	
			matrix	
0.75	0.25	0.25		
1	0	0		
			O- site occupancy matrix	
0	1	0	IIIatrix	
Z ₁	Z ₂	Z ₃	D 1 1	
e ₁	e ₂	e ₃	P- elemental property matrix	

Matrix	Shape	Description	
E (Element) (Z _{max} ×3)		One-hot encoded vectors representing unique elements (up to ternary). Z_{max} is the highest atomic number in the database.	
L (Lattice)	(2×3)	Encodes lattice geometry in two rows: constants (a,b,c) and angles (α,β,γ) .	
U (Site Coord.) (NeitaeX3)		Fractional coordinates of lattice sites. Uses zero padding for empty sites, where nsites is the max atoms in a unit cell.	
U (Occupancy) I (Deitecx.1)		One-hot encoded elements at specific lattice sites. Corresponds one-to-one with matrices E and O.	
P (Property) (6x3)		Encodes 6 chemical properties: Atomic Number (Z), Electronegativity (e), Period (p), Group (g), Fraction (s), and Valence (n _v).	

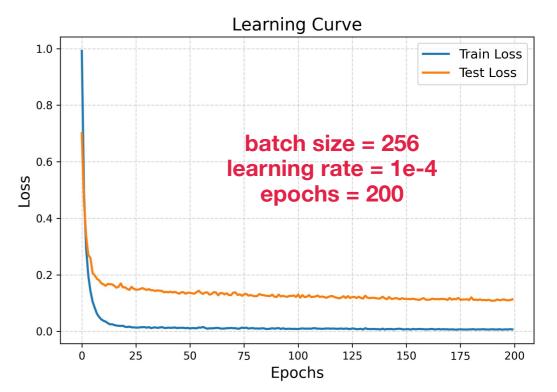
 $Z_{max} = 94$ (Pu), $n_{sites} \le 20$: IRCR shape is 144x3

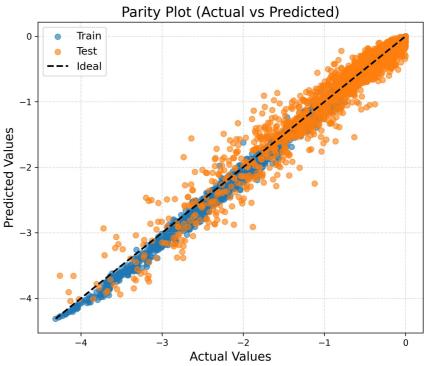
Follow this repo to construct IRCR from CIF/POSCAR files : https://github.com/SouravMal/MagGen

Task1: Formation Energy Prediction with Neural Network



```
import torch
import torch.nn as nn
class RegressorANN(nn.Module):
   def __init__(self,
            input size=432,
                                    A Neural Network
            hidden_size_1=1024,
                                     with four hidden
            hidden_size_2=256,
                                         layers.
            hidden_size_3=128,
            hidden_size_4=32):
       super(RegressorANN, self).__init__()
       self.fc1 = nn.Linear(input_size, hidden_size_1)
       self.bn1 = nn.BatchNorm1d(hidden_size_1)
       self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
       self.bn2 = nn.BatchNorm1d(hidden_size_2)
       self.fc3 = nn.Linear(hidden_size_2, hidden_size_3)
       self.bn3 = nn.BatchNorm1d(hidden_size_3)
       self.fc4 = nn.Linear(hidden_size_3, hidden_size_4)
       self.bn4 = nn.BatchNorm1d(hidden_size_4)
       self.fc5 = nn.Linear(hidden_size_4, 1)
       self.act = nn.ReLU()
   def forward(self, x):
       # Standard order: Linear -> BatchNorm -> Activation
       x = self.act(self.bn1(self.fc1(x)))
       x = self.act(self.bn2(self.fc2(x)))
       x = self.act(self.bn3(self.fc3(x)))
       x = self.act(self.bn4(self.fc4(x)))
       out = self_fc5(x)
        return out
                                                         5
```





Dataset	MAE (eV/atom)	R2 Score
Training Set	0.026	0.995
Test Set	0.101	0.946

Limitation of MLP:

Flattening destroys spatial structure.

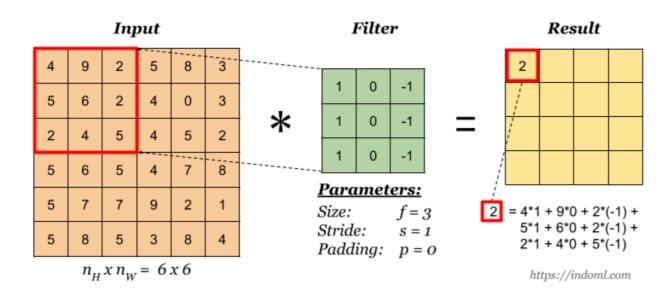
A pixel at (x,y) loses its connection to its neighbours, destroying local context like shapes or textures.

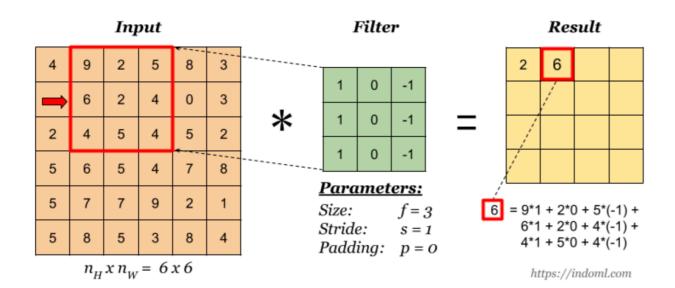
Better approach is using convolution network on top of our MLP.

Convolutional Neural Network (CNN)

CNNs automatically learn spatial structures of features from data using convolutions.

Convolution Layers: Apply learnable filters that slide over the input to detect edges, textures, shapes or any complex patterns.





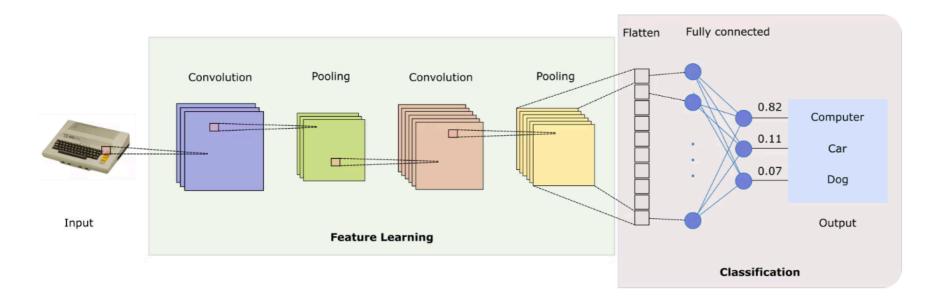
Stride : The number of pixels by which the filter moves after each operation. $\ ^{7}$

- 1. A 3x3 filter scans the image, and at each position, it performs element-wise multiplication with the selected patch and sums the result to produce one output value.
- 2. With stride=1, the filter moves one step at a time across the input, computing the next value in the feature map.
- 3. This example show how the first and second output values are obtained, demonstrating how convolution extracts local patterns from the image.

After scanning the whole image, we will get a feature map.

By increasing the stride, the filter jumps more pixels at each step, which reduces the spatial size of the output. In this way, controlling the stride effectively downsamples the image.

Architecture of a convolutional neural network



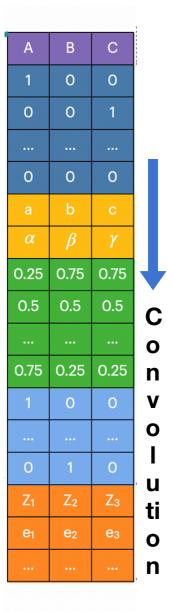
 $Image\ Source: \underline{https://domino.ai/blog/gpu-accelerated-convolutional}\\ -neural-networks-with-pytorch$

Pooling reduces the spatial size of feature maps while keeping key information.

Max pooling selects the largest value in each small region (e.g., 2×2), capturing the strongest activation.

It downsamples the feature map, making the model more efficient and more robust to small shifts.

Task2: Formation Energy Prediction with Convolution Neural Network



Matrix (144x3)

```
class RegressorANN(nn.Module):
                                                               class conv_block(nn.Module):
                                                                  def __init__(self, in_c, out_c, kernel_size, stride, padding):
    def __init__(self,
                                                                      super(conv_block, self).__init__()
             hidden_size_1=1024,
             hidden size 2=256,
                                                                      self.conv = nn.Conv1d(in_c, out_c, kernel_size, stride, padding)
                                                                      self.activation = nn.LeakyReLU(0.2)
             hidden_size_3=128,
                                                                      self.normalize = nn.BatchNorm1d(out_c)
             hidden size 4=32):
         super(RegressorANN, self). init_()
                                                                  def forward(self, x):
                                                                      out = self.conv(x)
                                                                      out = self.activation(out)
         # convolution
                                                                      out = self.normalize(out)
         self.conv1 = conv_block(3, 64, 5, 2, 2)
                                                         72x64
                                                                      return out
         self.conv2 = conv block(64, 128, 5, 2, 2) 36x128
         self.conv3 = conv block(128, 256, 5, 2, 2) 18x256
         self.conv4 = conv_block(256, 256, 3, 1, 1) 18x256
         # flatten
         self.flatten = nn.Flatten()
         # fully connected layer
         self.fc1 = nn.Linear(256*18, hidden_size_1)
         self.bn1 = nn.BatchNorm1d(hidden_size_1)
         self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
                                                                        def forward(self, x):
                                                                            # convolution
         self.bn2 = nn.BatchNorm1d(hidden size 2)
                                                                            x = self.conv4(self.conv3(self.conv2(self.conv1(x))))
         self.fc3 = nn.Linear(hidden_size_2, hidden_size_3)
                                                                            # flattening
         self.bn3 = nn.BatchNorm1d(hidden_size_3)
                                                                            x = self.flatten(x)
                                                                            # fully-connected layer
         self.fc4 = nn.Linear(hidden size 3, hidden size 4)
                                                                            x = self.act(self.bn1(self.fc1(x)))
```

x = self.act(self.bn2(self.fc2(x)))
x = self.act(self.bn3(self.fc3(x)))

x = self.act(self.bn4(self.fc4(x)))

out = $self_fc5(x)$

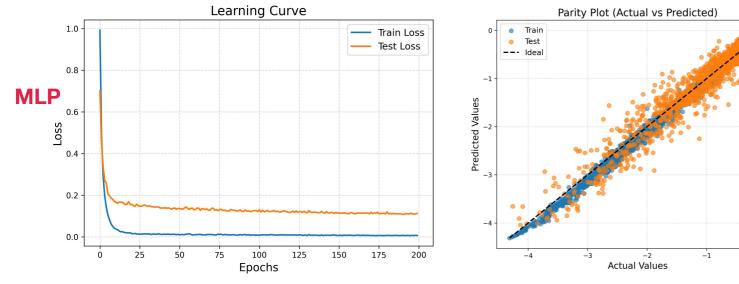
return out

self.bn4 = nn.BatchNorm1d(hidden_size_4)

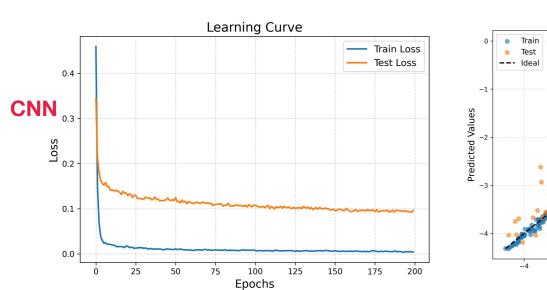
self.fc5 = nn.Linear(hidden_size_4, 1)

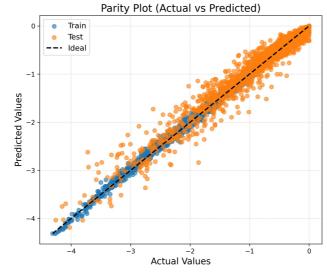
self.act = nn.ReLU()

Comparing Model Performances



Dataset	MAE (eV/atom)	R2 Score
Training Set	0.026	0.995
Test Set	0.101	0.946





Dataset	MAE (eV/atom)	R2 Score
Training Set	0.016	0.998
Test Set	0.086	0.958

