Ensemble Learning

Beyond Single Models: Bias, Variance, and Model Combinations

Part 1: Foundation Concepts

- Bias vs Variance Tradeoff
- How Regularization Affects This Tradeoff

Part 2: Ensemble Methods

- Introduction to Ensemble Learning
- Random Forest (Bagging Paradigm)
- Gradient Boosting (Boosting Paradigm)

Part 1: Bias-Variance Tradeoff

The Fundamental Machine Learning Challenge

Every ML model faces a crucial tradeoff:

Bias: Error from oversimplifying assumptions

- Underfitting the true relationship
- High bias = systematic errors

Variance: Error from sensitivity to small changes in training data

- Overfitting to specific training examples
- High variance = inconsistent predictions

Understanding Bias

High Bias Models:

- Linear regression on non-linear data
- Shallow decision trees
- Simple assumptions about data relationships

Characteristics:

- Poor performance on training data
- Poor performance on test data
- Consistent (but wrong) predictions
- Underfitting problem

Example: Using linear model for quadratic relationship

Understanding Variance

High Variance Models:

- Deep neural networks with little data
- Deep decision trees without pruning
- Complex models with many parameters

Characteristics:

- Excellent performance on training data
- Poor performance on test data
- Predictions change dramatically with new training data
- Overfitting problem

The Bias-Variance Decomposition

Total Error = Bias² + Variance + Irreducible Error

Error =
$$Bias^2 + Variance + \sigma^2$$

Where:

- Bias²: Systematic errors from model assumptions
- Variance: Sensitivity to training data variations
- σ²: Irreducible noise in the data

Key Insight: Usually cannot minimize both bias and variance simultaneously

Model Complexity and the Tradeoff

Simple Models (Low Complexity):

- High Bias, Low Variance
- Consistent but potentially wrong predictions
- Examples: Linear regression, logistic regression

Complex Models (High Complexity):

- Low Bias, High Variance
- Accurate but inconsistent predictions
- Examples: Deep neural networks, unpruned decision trees

Sweet Spot: Balance between bias and variance for minimum total error

How Regularization Affects Bias-Variance

Regularization's Impact

Regularization increases bias but decreases variance

L1/L2 Regularization Effect:

- Forces simpler models (increases bias)
- Reduces sensitivity to training data (decreases variance)
- Often results in better generalization

Hyperparameter C controls the tradeoff:

- Small C: More regularization → Higher bias, Lower variance
- Large C: Less regularization → Lower bias, Higher variance

Regularization in Practice

Without Regularization:

- Model fits training data very closely
- High variance, low bias
- Poor generalization

With Optimal Regularization:

- Model makes slightly biased predictions
- Much lower variance
- Better test performance

Over-regularization:

• Model becomes too simple, High bias, very low variance, Underfitting occurs

Part 2: Ensemble Learning

The Ensemble Philosophy

Core Principle: Instead of learning one super-accurate model, train many low-accuracy models and combine their predictions.

Key Insight: "The wisdom of crowds" - multiple weak learners can create a strong metamodel.

Requirements for Success:

- 1. Each weak model must be better than random guessing
- 2. Models should make different types of errors (diversity)
- 3. Effective combination strategy

Why Ensemble Learning Works

Individual Weak Models:

- Fast to train and predict
- Usually shallow decision trees
- Each slightly better than random
- Make different mistakes

Combined Strong Model:

- Weighted voting aggregates predictions
- Good models agree on correct predictions
- Bad models disagree on incorrect predictions
- Majority vote or averaging leads to accuracy

Weak Learners in Practice

Most Common Weak Learner: Shallow decision trees

Characteristics:

- Stop splitting after few iterations
- Not particularly accurate individually
- Fast training and prediction
- Each tree sees different aspects of data

Why Trees?

- Handle non-linear relationships
- Naturally handle mixed data types
- Easy to make diverse (different splits)

Two Ensemble Paradigms

Bagging (Bootstrap Aggregating): - Reduces variance

- Create multiple copies of training data
- Train weak learners on different samples
- Combine predictions by averaging/voting
- Example: Random Forest

Boosting: - Reduces bias

- Train weak learners sequentially
- Each learner fixes errors of previous ones
- Combine with weighted voting
- Example: Gradient Boosting

The Bagging Algorithm

Step 1: Create B random samples S_b from training set

- Sample with replacement (bootstrap sampling)
- Each sample $|S_b| = N$ (same size as original)
- Each sample slightly different

Step 2: Train decision tree f_b on each sample S_b

Step 3: Combine predictions:

$$\hat{y} = rac{1}{B} \sum_{b=1}^{B} f_b(x) \quad ext{(regression)}$$

$$\hat{y} = \text{majority_vote}(f_1(x), f_2(x), \dots, f_B(x))$$
 (classification)

Random Forest Enhancement

Problem with Vanilla Bagging: Trees become correlated

- Strong predictive features dominate splits
- Many trees use same features
- Correlation reduces ensemble benefit

Random Forest Solution: Feature randomness

- At each split, consider random subset of features
- Typically \sqrt{p} features out of p total features
- Forces trees to be different
- Reduces correlation between trees

Why Random Forest Works

Variance Reduction: Multiple bootstrap samples reduce overfitting

- Averages out artifacts in any single sample
- Noise and outliers have less impact
- Model becomes more stable

Feature Diversity: Random feature selection

- Prevents feature dominance
- Ensures tree diversity
- Different trees capture different patterns

Key Insight: Uncorrelated predictors are essential for ensemble success

Random Forest Hyperparameters

Critical Parameters:

1. Number of trees (B):

- More trees → better performance (diminishing returns)
- Typical range: 100-1000 trees

2. Feature subset size:

- \circ Regression: p/3 features
- \circ Classification: \sqrt{p} features
- Can tune based on validation performance
- 3. Tree depth: Usually left deep (individual trees can overfit)

Random Forest Advantages

Why Random Forest is Popular:

- Robust: Handles outliers and noise well
- Fast: Embarrassingly parallel training
- No overfitting: More trees rarely hurt performance
- Feature importance: Built-in feature ranking
- Mixed data types: Handles categorical and numerical features
- Missing values: Can handle missing data naturally

Main Limitation: Less interpretable than single decision tree

7.5.2 Gradient Boosting

The Boosting Philosophy

Sequential Learning: Each model fixes errors of previous models

Key Difference from Bagging:

- Bagging: Models trained independently
- Boosting: Models trained sequentially, each learning from previous mistakes

Focus: Reduce bias (underfitting) rather than variance

Gradient Boosting for Regression

Step 1: Start with simple baseline

$$f_0(x) = rac{1}{N} \sum_{i=1}^N y_i \quad ext{(mean of targets)}$$

Step 2: Compute residuals (errors)

$$\hat{y}_i = y_i - f(x_i)$$

Step 3: Train new tree f_1 to predict residuals

Step 4: Update model

$$f = f_0 + \alpha f_1$$

Step 5: Repeat until M trees added

$$f = f_0 + \alpha f_1 + \alpha f_2 + \ldots + \alpha f_M$$

Intuition Behind Gradient Boosting

What's Happening:

- 1. Current model makes predictions
- 2. Calculate where model is wrong (residuals)
- 3. Train new model to fix these specific errors
- 4. Add correction to ensemble with learning rate α

Learning Rate α :

- Controls how much each tree contributes
- Small α : Conservative updates, needs more trees
- Large α : Aggressive updates, risk of overfitting

Analogy: Student learning from mistakes on practice exams

Why "Gradient" Boosting?

Connection to Gradient Descent:

Gradient Descent: Move parameters to minimize cost function

- Use gradient to find direction
- Use learning rate for step size

Gradient Boosting: Add models to minimize prediction error

- Use residuals as "gradient proxy"
- Use learning rate for contribution weight

Key Insight: Residuals show direction to improve predictions, just like gradients show direction to improve parameters

Gradient Boosting Hyperparameters

Three Critical Parameters:

1. Number of trees (M):

- More trees can improve accuracy
- Risk of overfitting with too many

2. Learning rate (α):

- Smaller rates need more trees but often generalize better
- Typical range: 0.01 0.3

3. Tree depth:

- Shallow trees (depth 3-8) often work best
- Deeper trees → slower training/prediction

Gradient Boosting for Classification

Binary Classification Setup:

$$P(y=1|x) = rac{1}{1+e^{-f(x)}}$$

where
$$f(x) = \sum_{m=1}^M f_m(x)$$

Algorithm Differences:

- ullet Initialize with $f_0 = \ln\left(rac{p}{1-p}
 ight)$ where $p = rac{1}{N}\sum_{i=1}^N y_i$
- ullet Compute gradients: $g_i=rac{\partial L_f}{\partial f}$ for each example
- Train tree on gradients instead of residuals
- Use line search to find optimal step size

Random Forest vs Gradient Boosting

Random Forest:

- Parallel training (fast)
- Reduces variance
- Harder to overfit, Good default choice, Less sensitive to hyperparameters

Gradient Boosting:

- Sequential training (slower)
- Reduces bias
- Can overfit with too many trees, Often higher accuracy, More hyperparameter tuning needed

Rule of thumb: Try Random Forest first, use Gradient Boosting for maximum accuracy

Ensemble Learning in Practice

Modern Implementations:

- Random Forest: scikit-learn RandomForestClassifier/Regressor
- Gradient Boosting: XGBoost, LightGBM, CatBoost

When to Use Ensembles:

- Tabular data competitions (almost always win), When accuracy is critical
- When you have sufficient training data, When interpretability is not primary concern

Limitations:

- More complex than single models
- Harder to interpret
- Longer training times (especially boosting)

Key Takeaways

Bias-Variance Tradeoff:

- Fundamental challenge in ML
- Regularization increases bias, decreases variance
- Sweet spot depends on problem and data size

Ensemble Learning:

- Combines weak learners into strong meta-model
- Random Forest reduces variance through bagging
- Gradient Boosting reduces bias through sequential error correction
- Often achieves best predictive performance

Practical Wisdom: Master these ensemble methods - they're workhorses of modern ML

Important Clarifications: A Deeper Look

Regularization Effects: ✓ **Correctly Understood**

- Regularization reduces variance by constraining model complexity
- Prevents overfitting to training data noise
- May slightly increase bias but improves generalization

Ensemble Effects: More Nuanced Than Initially Presented

Important Clarifications: A Deeper Look

Bagging Ensembles (Random Forest):

- Primary effect: Reduce variance through averaging
- Bias effect: Keeps bias roughly the same
- Best for: High variance (overfitting) models

Boosting Ensembles (Gradient Boosting):

- Primary effect: Reduce bias through sequential error correction
- Secondary effect: May slightly increase variance
- Best for: High bias (underfitting) models

The Complete Bias-Variance Picture

Model Complexity Effects:

- Increasing complexity: Decreases bias ↓, increases variance ↑
- Decreasing complexity: Increases bias ↑, decreases variance ↓

Different Solutions for Different Problems:

High Bias Models (Underfit):

- Solution: Boosting ensembles, increase model complexity
- Examples: Linear regression on complex data, shallow trees

High Variance Models (Overfit):

- Solution: Regularization, bagging ensembles, reduce complexity
- Examples: Deep trees, complex neural networks

For Underfitting (High Bias):

- 1. Try Gradient Boosting
- 2. Increase model complexity
- 3. Add more features
- 4. Reduce regularization

For Overfitting (High Variance):

- 1. Try Random Forest
- 2. Add regularization
- 3. Reduce model complexity
- 4. Collect more training data

Key Insight: Choose your ensemble method based on whether your base models have high bias or high variance