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Advanced Architectures & Regularization

Learning Objectives:

o Explore deep network architectures and residual connections
e Master advanced regularization techniques mathematically

e Understand various loss functions and their applications
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Deep Networks - Depth vs Width

Classical Result (Width):
Single hidden layer with sufficient neurons can approximate any continuous function
Modern Understanding (Depth):

e Exponential advantage: Deep networks can represent certain functions exponentially

more efficiently
e Hierarchical features: Each layer learns increasingly complex representations

o Computational efficiency: Depth reduces required parameters

Mathematical Insight:
Function with k layers and n neurons per layer: O(kn?) parameters

Same function with 1 layer: O(n*) parameters potentially needed
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Residual Connections

The Vanishing Gradient Solution

Problem with Very Deep Networks:

OL 0L
- () 1 (l-1)
sw ~ aam LW )

As L increases, this product tends to vanish or explode.
Residual Block Mathematical Formulation:

AD — 6(AD 1 FAD, Wh))
Where F (A(l), W(l)) is a residual function (typically 2-3 layers)

ravanKey-innavation; ldentity mapping A Y 4 learned residual F()
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Residual Connections - Gradient Flow Analysis

Forward Pass:
AED — A0 + F(A(l),W(l))

Backward Pass:

0L 0L 1+8F(A(l),W(l))
HAD  PA U+ HA ()

Key Insight: The "+1" term ensures gradient flow even if 8?51) > ()

Multi-layer Gradient:

0L 0L ﬁ - OF )
OA( oA 1 OA (k1)
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Skip Connections - Dense and Highway Networks

Dense Connections (DenseNet):
AD =g([AO AD AW O 4 pO)
Where |-| denotes concatenation.

Highway Networks:
l l
AFD = T(AD) 0 o(WHAD + D)+ (1-T(AD)) 0@ AD

Where:
e T(AW) = O'(W:(Z{)A(l) + bg)):Transform gate
e 1 — T(AW):Carry gate
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Dropout Deep Dive - Mathematical Analysis

Training Phase: For layer [ with dropout probability p:

r) ~ Bernoulli(1 — p)

~ 1

A — rO o A®
1—p

Expected Value Preservation:

E[A]] = —— (1-p)- 4] =AY

Variance:

Var[ 4[] = —— fp (A2

ravaninferencePhase:Noscaling needed due to expectation preservation
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Dropout Variants

Spatial and Structured Dropout

Standard Dropout: Independent for each neuron
r; ~ Bernoulli(1 — p) independently

Spatial Dropout (for CNNs): Entire feature maps

r. ~ Bernoulli(1 — p) for channel ¢

~ 1
R Y
27.776 1 . p C Z7J7c
DropConnect: Drop connections instead of neurons
M, ; ~ Bernoulli(1 — p)
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Early Stopping - Mathematical Formulation

Validation Loss Monitoring:
Let L. (t) be validation loss at epoch ¢

Stopping Criterion:
Stop training when:

Lya(t) > Lya(t — k) for k consecutive epochs

Patience Parameter: Number of epochs to wait before stopping

Mathematical Justification:
Minimizes expected test error by finding optimal bias-variance trade-off point

Optimal Stopping Time:
t* = argmin E| Lyeg (2)]
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Data Augmentation - Mathematical Transformations

Geometric Transformations:
, cosf —sinf
e Rotation: Ry = | .
sinf cos@
e Translation:x' = x+ t

e Scaling:x' = s-x
Statistical Transformations:

e Gaussian Noise:x’ = x + N(0, 0?)
 Normalization:x’ = =—£

Theoretical Foundation:
Augmentation increases effective dataset size and reduces overfitting by making model

Advanged Architectures & Regularization ,
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Loss Functions for Classification - Cross-Entropy

Binary Cross-Entropy: For probability p = o(w?!x + b) and true label y € {0, 1}:
Likelihood:
P(ylx) = p*(1 —p)* "
Log-Likelihood:
log P(y|x) = ylogp + (1 — y)log(1 — p)
Cross-Entropy Loss:
L = —[ylogp + (1 — y)log(1 — p)]
Derivative:
OL  p—y
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Loss Functions for Classification - Multi-class CE

Softmax Function:

ek

Zf:l e

Pr =

Properties:
o Zé{zl pr = 1,pr > 0forall k, Differentiable everywhere
Multi-class Cross-Entropy: L — — Zle Y. log pi

Derivative:

oL
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Loss Functions for Regression - Beyond MSE

Mean Squared Error (MSE):

1.
Lyisg = E(y —y)°

e Sensitive to outliers, Derivative: y — y
Mean Absolute Error (MAE):
Lyviag = |9 — ¥
e Robust to outliers, Non-differentiable at O

Huber Loss (Smooth MAE):

o[-y’ iy -yl <9
Huber 5(|g — y| — %5) otherwise
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Multi-task Learning - Mathematical Framework

Shared Representation:h = fg.req(X; Oshared)
Task-Specific Heads: y; = f;(h; 0;) for task i

Combined Loss: Lot = 301 ANiLi (9, yi)

Gradient Update:

OL;

shared

T
Hshared A eshared — 772 )\z 8
1=1

Challenge: Balancing task weights A;
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Multi-label Classification - Mathematical Differences

Multi-class: One label per example, > ~,. pi, = 1

e Qutput layer: Softmax, Loss: Categorical cross-entropy
Multi-label: Multiple labels per example, Each p;. independent

e Qutput layer: Multiple sigmoids, Loss: Binary cross-entropy per label
Multi-label Loss: L = — Zle[yk log pr + (1 — yg) log(1 — pi)]

Threshold Decision:

. 1 idpr>T
95 =30 otherwise
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Advanced Regularization

Spectral Normalization

Weight Matrix Singular Value Decomposition: W = UX V7’

Spectral Norm: Largest singular value

(W) = max |Wh|
hi|[h[[=1

Spectral Normalization:

Wign =

a(W)
Effect: Constrains Lipschitz constant of network
[f(x1) — f(x2)|| < Ljlx1 — x2]
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Layer Normalization

Batch Normalization: Normalize across batch dimension
Li— B

By =
,/0%+f

Layer Normalization: Normalize across feature dimension

B = S
\/ O T€
Where
1 & , 1 & )
HL = 7+ 2 % UL:_Z(‘L’J_NL)
H < H <
7=1 71=1
Advantages:

rdvancederNerbateh-dependency: Works with batch size = 1, RNN friendly: Better for sequential  1°
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Attention Mechanisms Preview

Attention Weights:

R )
! D k1 €xP(eik)

Where e; ; = a(s;, h;) is attention energy

Context Vector:c; = > %, a; jh;

Self-Attention:

: QK7
Attention(Q, K, V) = softmax Vv
v dy

Foundation for Transformers: Modern architecture revolutionizing NLP and beyond
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Practical Architecture Design

Choosing Network Depth and Width

Depth Considerations: Shallow networks: Fast training, limited expressiveness, Deep
networks: More expressive, harder to train, need residual connections

Width Considerations: Narrow networks: Few parameters, may underfit, Wide networks:
Many parameters, may overfit, expensive

Rule of Thumb: Start with proven architectures (ResNet, DenseNet) and adapt

Architecture Search:

o = argmin L;(W* (), a)

Where w*(a) = arg miny Lipaim (W, @)
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Summary: Class 4 Key Concepts

Deep Network Architectures:

e Residual connections: A (1) = A + F(A®) solve vanishing gradients

e Skip connections: Enable very deep networks, improve gradient flow
Advanced Regularization:

e Dropout variants: Spatial, DropConnect with mathematical formulations
e Data augmentation: Mathematical transformations for robustness

e Spectral normalization: Control Lipschitz constant
Loss Functions:

e Classification: Binary/multi-class cross-entropy derivations
AdvancedérRegressionaSE MAE, Huber loss trade-offs
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