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Optimization & Training Dynamics

Learning Objectives:

e Master gradient descent variants and their mathematical properties
e Understand training challenges: vanishing/exploding gradients

e |earn regularization techniques and practical considerations
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Gradient Descent Family - Batch Gradient Descent

Mathematical Formulation:
1 m
W+~ W — 7’]% Z VVVL(‘Rra Xiy yz)
i=1

Complete Dataset Update:

W+ W —nVwJ(W)
Where: J(W) = = Y7 L(W, x;,y;)
Properties:

e Convergence: Guaranteed for convex functions
o Computation: Expensive for large datasets

Optimizatien MemoFy:Reeguires full dataset in memory
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Gradient Descent Family - Stochastic GD (SGD)

Mathematical Formulation:
W W —nVwL(W,x;,y;)
Key Differences from Batch GD:

e Updates after each example
e Noisy gradients - high variance

e Faster iterations but more steps needed
Convergence Properties:

e Non-convex: Can escape local minima due to noise

70

ot often needed

e Learning rate decay:7); =

ontimizatien @scilatoryibehavior around optimum
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Gradient Descent Family - Mini-batch GD

Mathematical Formulation:
1
WeW-—n=) VwL(W,x;,y)
1eB
Where B is a mini-batch of size B

Batch Size Trade-offs:

e Small batches (B = 32): Fast, noisy, good generalization
e Large batches (B = 512): Stable, parallel, may overfit
e Sweet spot: Usually B € [32, 256]

Practical Advantages:

Optimizatign {agtorization: Efficient GPU computation
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Momentum Methods - Classical Momentum

Mathematical Formulation:
vy =vvi 1+ nVwL(W)
W:=W; | —v;

Physical Analogy:

e v;: Velocity vector
e ~v:Friction coefficient (typically 0.9)
e nV L: Force from gradient

Benefits:

e Accelerates in consistent gradient directions

opimizai®: PAMRENs ascillations in high-curvature directions, Escapes small local minima
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Momentum Methods - Nesterov Accelerated Gradient

Mathematical Formulation:

Vi =1 +NVwL(Wio1 — yviq)
W, =W, | —v;

Key Insight: "Look ahead" before computing gradient

e Evaluate gradientat W;_1 — yv;_1

e More responsive to changes in gradient direction
Convergence Rate:

e Convex functions: O(1/t%) vs O(1/t) for SGD

e Better practical performance in many cases
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Adaptive Learning Rates - AdaGrad

Mathematical Formulation:
G, =G 1+ VwL(W)2

n
W, =W, — VwL(W
t t—1 /G, e wL(W)

Key Features:

e Per-parameter learning rates
e Larger updates for infrequent features

e Smaller updates for frequent features
Problem: Learning rate decay too aggressive

Sl 8({%r,;jimonotonlc:ally iIncreases, Eventually stops learning

ning Dynamics
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Adaptive Learning Rates - Adam Optimizer

Mathematical Formulation:
m; = fim; 1 + (1 — 1) VwL(W)
vi = Bavi_1 + (1 — B2)(VwL(W))?

Bias Correction:

N I R V¢
m; — , Vi =
1= 1 - B
Parameter Update:
n N
Wt = Wt—l — - I
V¢ —I— €

Default Values: 8; = 0.9, 85 = 0.999,¢ = 1078
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Adam Optimizer Intuition - Combining Best of Both

Momentum Component (m;):

e Exponential moving average of gradients
e Provides direction and acceleration

e Similar to classical momentum
Adaptive Component (v;):

e Exponential moving average of squared gradients
e Provides per-parameter scaling
e Similarto AdaGrad but with decay

Bias Correction:

Optimizatign Correetsinitialization bias (my = vy = 0), Important in early training steps
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Training Challenges - Vanishing Gradient Problem

Mathematical Analysis:
Consider L-layer network with weights W) and activations o(-)

Gradient at layer [:

OL 0L
_ () 57 (Z,(h-D)
aW0  9AD kl_[lﬂw o (Z7)

For Sigmoid: o’(z) < 0.25
Product of many small terms: [[;_;,, [W®|-0.25 — 0

Consequence: Early layers learn very slowly

Optimization & Training Dynamics
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Training Challenges - Exploding Gradient Problem

Mathematical Condition:
if [(W®)| . |6'(Z*)| > 1 for most layers:

L
[T W®-1o'(Zz®)] — oo
k=I+1

Consequences:

o Unstable training: Loss oscillates wildly
e Numerical overflow: Gradients become NaN

e Poor convergence: Cannot find good solution

Solution Preview: Gradient clipping, better initialization, skip connections

Optimization & Training Dynamics
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Overfitting vs Underfitting - Bias-Variance Trade-off

Underfitting (High Bias):
e Model too simple for data complexity
e Training error: High
e Validation error: High
e Gap:Small
Overfitting (High Variance):
e Model too complex, memorizes training data

e Training error: Low

e Validation error: High

Optimizatign QWarﬁmlgﬁggaemms
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Regularization Techniques

L1 and L2 Regularization

L2 Regularization (Ridge): - Shrinks weights, smooth solutions
A w2
Jreg(W) = J(W) + 5 > [[WO[%
=1

Gradient Modification:
Vereg = VwJ + \W

L1 Regularization (Lasso): - Sparse weights, feature selection

L
Jeeg(W) = J(W) + 2 |[WO|;
[=1
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Regularization Techniques - Dropout

Training Phase:

rY) ~ Bernoulli(p)

A — 0 ® AD
A(H—l) _ 0_(w(l—|—l)A(l) 4+ b(l—l—l))
Testing Phase:
A(l—l—l) _ J(W(l—{—l) (p ] A(l)) 4+ b(l—l—l))
Intuition:
e Randomly "drop" neurons during training
e Forces network to not rely on specific neurons

Optimizatign Createsensemble effect
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Weight Initialization Strategies - Xavier/Glorot

Problem: Poor initialization leads to vanishing/exploding gradients

Xavier Initialization:
For layer with n;, inputs and 14y OUtputs:

WNN(O, 2 )

MNin + Nout

§ 0
Wi \/ \/
TMin + Nout Nin + Nout

Goal: Maintain activation variance across layers

Or Uniform:;

Optimization & Training Dynamics
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Weight Initialization Strategies - He Initialization

For ReLU Networks:

Mathematical Justification:

e ReLU Kkills half the neurons (E[ReLU(z)] = 1 E[z] forz ~ N (0, 0?))
e Need larger variance to compensate

e Maintains signal propagation through deep networks
Rule of Thumb:

e Sigmoid/Tanh: Xavier initialization
optimizai®: R€LU/Leaky ReLU: He initialization
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Learning Rate Scheduling - Adaptive Learning Rate

Step Decay:
e = no - v\
Exponential Decay:
M ="n0-e "
Cosine Annealing:
1 tm
Tt = Mmin T E(nmax — el COS(?))
Learning Rate Warmup:
t
Tt = Tlbase ° 4 for t < twarmup
warmup

Optimization & Training Dynamics
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Batch Normalization - Mathematical Formulation

For mini-batch B = {x1, z3,..., T, }:

Statistics:

i=1 i=1
Normalization:
~ _ Li— B
Z 0% + €
Scale and Shift:
Yi =Y&; + B

Optimization & Trainin

g Dynamics
Where v and E are learnable parameters
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Batch Normalization Benefits - Why It Works

Internal Covariate Shift Reduction:

e Stabilizes distribution of layer inputs

e Reduces dependence on initialization, Allows higher learning rates
Regularization Effect:

e Noise from mini-batch statistics

e Reduces overfitting (similar to dropout)
Gradient Flow:
e Prevents vanishing gradients, Enables training of very deep networks

Mathematical Insight:
ortimBNpehseres B °= 0 and Var|z| = 1 for each layer
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Practical Training Tips - Monitoring and Debugging

Loss Curves:

e Training loss decreasing: Model is learning
e Validation loss increasing: Overfitting

e Both losses plateauing: Need more capacity or different architecture
Gradient Monitoring:

e Gradient norm: Should not be too small (vanishing) or too large (exploding)

e Parameter updates: Should be ~1% of parameter magnitude
Activation Statistics:

e Mean activations: Should not be all O or saturated

Optimizatign Activatiomvariance: Should remain stable across layers
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Summary: Class 3 Key Concepts

Optimization Algorithms:

e SGD variants: Batch, mini-batch, momentum, Nesterov

o Adaptive methods: AdaGrad, Adam with mathematical formulations

Training Challenges:

 Vanishing gradients: |

[Wo' — 0

e Exploding gradients: |

[Wo' — oo

e Overfitting: High variance, regularization needed

Practical Solutions:

e Regularization: L1/L2, dropout mathematical formulations
Ortimizatien fntialization: Xavier for sigmoid/tanh, He for ReLU
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