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Foundations & Perceptron

Learning Objectives:

e Understand biological motivation and historical context
o Master mathematical foundations of single neurons

e | earn perceptron mechanics and learning algorithm
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From Biology to Mathematics

Biological vs Artificial Neurons

Biological Neuron:

e Dendrites: Receive signals from other neurons
e Cell body: Processes and integrates signals
e Axon: Transmits output when threshold reached

e Synapses: Control signal strength
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From Biology to Mathematics

Biological vs Artificial Neurons

Artificial Neuron:
e Inputs (1, T2, ..., T,): Represent dendrites
e Weights (wl, W, ..., wn): Represent synaptic strengths
e Weighted sum + bias: Cell body processing

e Activation function: Axon firing threshold
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Historical Context

The Journey from McCulloch-Pitts to Modern Al

194 3: McCulloch-Pitts neuron

e First mathematical model of biological neuron

e Binary threshold activation

1957: Rosenblatt's Perceptron

e |earning algorithm introduced

e Pattern recognition applications
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Historical Context

The Journey from McCulloch-Pitts to Modern Al

1969: Minsky & Papert critique

e Showed limitations (XOR problem)

e Al winter begins
1980s: Backpropagation revival

o Multi-layer networks solve limitations

e Modern deep learning foundation
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Mathematical Foundations

Linear Algebra Refresher

Vectors: Column vectors represent data points

Dot Product: Core operation in neural networks

n
WX = E W;T; = W11 + Wako+...+WnpTy
i=1
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Mathematical Foundations

Linear Algebra Refresher

Matrix-Vector Multiplication:

Wx =
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The Perceptron Model

Mathematical Definition

Core Equation:
y= f(w-x+0b)

Where:
e X =[x L
= |x1,T2,...,%,]" : Input vector
e W= |[wi,ws,...,w,]: Weight vector

e b:Bias term, f(-): Activation function, y: Output

Expanded Form:
y = f(wiz1 + waza+. .. +w,x, +b)

Foundations & Perceptron



Neural Networks Class 1

Activation Functions

Step Function

Mathematical Definition:

1 itz>0
f(z)_{o if 2 < 0

Properties:

e Binary output: Only O or1
e Non-differentiable: Cannot use gradient-based learning
e Historical importance: Original perceptron activation

Geometric Interpretation:
Found@reatés hard decision boundaryatw - x + b = 0
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Activation Functions

Sigmoid Function

Mathematical Definition:

Properties:

e Outputrange: (0, 1)

e Smooth and differentiable

e Derivative:o'(z) = o(2)(1 — o(2))
Advantages:

ety probabilistic interpretation
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Activation Functions

Hyperbolic Tangent (tanh)

Mathematical Definition:
e —e ~ 2

tanh(z) = e - e

—1

Properties:
e Outputrange: (—1, 1), Zero-centered, Derivative: tanh’(z) = 1 — tanh?*(2)
Relationship to Sigmoid:
tanh(z) = 20(2z) — 1

Advantage: Zero-centered output helps with learning dynamics
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Activation Functions

ReLU (Rectified Linear Unit)

Mathematical Definition:

ReLU(z) = max(0, z)

z ifz>0
0 ifz2<0

Properties:

e Outputrange: |0, co), Computationally efficient

1 ifz>0

o Derivative:ReLU'(Z) = {0 if 2 <0

Advantages:

Foundatiogs Gly@s Vanishing gradient problem, Sparse activation (many zeros), Fast computation 1
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Decision Boundaries

Geometric Interpretation

Linear Decision Boundary:
The perceptron creates a hyperplane:w - x + b =0
2D Case: Line equationwixz1 + wexs + b =0

Classification Rule:

e Class1:w-x+b>0
e ClassO:w - x+b<0

Weight Vector Properties:

e W is perpendicular to decision boundary

oty fwr | affécts margin width, b shifts boundary away from origin
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Perceptron Learning Algorithm

Goal: Find weights that correctly classify all training examples, Learning rate: 7 > 0

controls step size
Algorithm:

1. Initialize weights randomly: w = 0 or small random values

2. For each training example (x;, ¥;):
o Compute prediction: ¢; = f(w - x; + b)

o Ify; # y;, update weights:
W W+ (Y — §i)X;
b < b+n(y; — i)

3. Repeat until convergence or max iterations
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Mathematical Derivation - Weight Update

Error Definition: e; = y; — ¥;
Update Rules:

(1) — w® 4 pex,

bt = p®) 4 pe,

W

Intuition:
e Correct prediction (e; = 0): No update
e False positive (¢; = —1): Move boundary away from x;

e False negative (e; = +1): Move boundary toward x;

Geometric Effect: Each update rotates the decision boundary to better classify the current

example 15
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Convergence Theorem

Theoretical Guarantees

Perceptron Convergence Theorem: If the training data is linearly separable, the
perceptron learning algorithm will converge to a solution in finite steps.

Key Conditions:

1.Linear separability: 3w™, b* such that all examples are correctly classified

2. Finite margin: Minimum distance between examples and decision boundary > 0
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Convergence Theorem

Theoretical Guarantees

Convergence Bound:
R2
Number of mistakes < —-
/7
Where:

e R:Maximum distance of any example from origin

e ~v:Margin (minimum distance to boundary)
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Limitations of Single Perceptron

The XOR Problem Preview
XOR Truth Table:

r1 xTo2 XOR

0 0 O

0 1 1

1 0 1

1 1 0

Problem: No single line can separate the XOR classes
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Limitations of Single Perceptron

The XOR Problem Preview

Mathematical Proof: Assume linear separability
e (0,0) - 0:b<0
e (0,1) > 1wy +b>0
e (1,0) > L:w; +b>0
e (1,1) > 0wy +wa+b<0

Contradiction: From conditions 2,3: w1, ws > —b > 0
But condition 4 requires: w; + wy < —b
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Summary: Class 1 Key Concepts

Biological Motivation:

e Neural networks inspired by biological neurons, Mathematical abstraction captures
essential computation

Mathematical Foundations:

e Linear algebra: vectors, dot products, matrices, Perceptron model:y = f (W - X + b)
Activation Functions:

e Step, sigmoid, tanh, ReLU with properties and trade-offs
Learning Algorithm:

e Perceptron learning rule with mathematical derivation, Convergence theorem for
Foundations {iAeEFlNPSeparable data
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