Neural Networks Class 1

Foundations & Perceptron

Learning Objectives:

- Understand biological motivation and historical context
- Master mathematical foundations of single neurons
- Learn perceptron mechanics and learning algorithm

1

From Biology to Mathematics

Biological vs Artificial Neurons

Biological Neuron:

- Dendrites: Receive signals from other neurons
- Cell body: Processes and integrates signals
- Axon: Transmits output when threshold reached
- Synapses: Control signal strength

From Biology to Mathematics

Biological vs Artificial Neurons

Artificial Neuron:

- Inputs (x_1, x_2, \dots, x_n) : Represent dendrites
- Weights (w_1, w_2, \dots, w_n) : Represent synaptic strengths
- Weighted sum + bias: Cell body processing
- Activation function: Axon firing threshold

Historical Context

The Journey from McCulloch-Pitts to Modern Al

1943: McCulloch-Pitts neuron

- First mathematical model of biological neuron
- Binary threshold activation

1957: Rosenblatt's Perceptron

- Learning algorithm introduced
- Pattern recognition applications

Δ

Historical Context

The Journey from McCulloch-Pitts to Modern Al

1969: Minsky & Papert critique

- Showed limitations (XOR problem)
- Al winter begins

1980s: Backpropagation revival

- Multi-layer networks solve limitations
- Modern deep learning foundation

5

Mathematical Foundations

Linear Algebra Refresher

Vectors: Column vectors represent data points

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

Dot Product: Core operation in neural networks

$$\mathbf{w}\cdot\mathbf{x} = \sum_{i=1}^n w_i x_i = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

Mathematical Foundations

Linear Algebra Refresher

Matrix-Vector Multiplication:

$$\mathbf{W}\mathbf{x} = egin{bmatrix} \mathbf{w}_1^T \ \mathbf{w}_2^T \ dots \ \mathbf{w}_m^T \end{bmatrix} \mathbf{x} = egin{bmatrix} \mathbf{w}_1^T \mathbf{x} \ \mathbf{w}_2^T \mathbf{x} \ dots \ \mathbf{w}_m^T \mathbf{x} \end{bmatrix}$$

The Perceptron Model

Mathematical Definition

Core Equation:

$$y = f(\mathbf{w} \cdot \mathbf{x} + b)$$

Where:

- $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$: Input vector
- $\mathbf{w} = [w_1, w_2, \dots, w_n]^T$: Weight vector
- b: Bias term, $f(\cdot)$: Activation function, y: Output

Expanded Form:

$$y = f(w_1x_1 + w_2x_2 + \ldots + w_nx_n + b)$$

Step Function

Mathematical Definition:

$$f(z) = egin{cases} 1 & ext{if } z \geq 0 \ 0 & ext{if } z < 0 \end{cases}$$

Properties:

- Binary output: Only 0 or 1
- Non-differentiable: Cannot use gradient-based learning
- Historical importance: Original perceptron activation

Geometric Interpretation:

Sigmoid Function

Mathematical Definition:

$$\sigma(z) = rac{1}{1 + e^{-z}}$$

Properties:

- Output range: (0,1)
- Smooth and differentiable
- Derivative: $\sigma'(z) = \sigma(z)(1-\sigma(z))$

Advantages:

Hyperbolic Tangent (tanh)

Mathematical Definition:

$$anh(z) = rac{e^z - e^{-z}}{e^z + e^{-z}} = rac{2}{1 + e^{-2z}} - 1$$

Properties:

• Output range: (-1,1), Zero-centered, Derivative: $anh'(z) = 1 - anh^2(z)$

Relationship to Sigmoid:

$$\tanh(z) = 2\sigma(2z) - 1$$

Advantage: Zero-centered output helps with learning dynamics

ReLU (Rectified Linear Unit)

Mathematical Definition:

$$ext{ReLU}(z) = ext{max}(0,z) = egin{cases} z & ext{if } z > 0 \ 0 & ext{if } z \leq 0 \end{cases}$$

Properties:

• Output range: $[0, \infty)$, Computationally efficient

• Derivative:
$$\operatorname{ReLU}'(z) = egin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z \leq 0 \end{cases}$$

Advantages:

Decision Boundaries

Geometric Interpretation

Linear Decision Boundary:

The perceptron creates a hyperplane: $\mathbf{w} \cdot \mathbf{x} + b = 0$

2D Case: Line equation $w_1x_1+w_2x_2+b=0$

Classification Rule:

- Class 1: $\mathbf{w} \cdot \mathbf{x} + b > 0$
- Class 0: $\mathbf{w} \cdot \mathbf{x} + b < 0$

Weight Vector Properties:

w is perpendicular to decision boundary

Foundations & Perceptron \mathbf{w} affects margin width, b shifts boundary away from origin

Perceptron Learning Algorithm

Goal: Find weights that correctly classify all training examples, **Learning rate:** $\eta>0$ controls step size

Algorithm:

- 1. Initialize weights randomly: $\mathbf{w} = \mathbf{0}$ or small random values
- 2. For each training example (\mathbf{x}_i, y_i) :
 - \circ Compute prediction: $\hat{y}_i = f(\mathbf{w} \cdot \mathbf{x}_i + b)$
 - \circ If $\hat{y}_i
 eq y_i$, update weights:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta (y_i - \hat{y}_i) \mathbf{x}_i \ b \leftarrow b + \eta (y_i - \hat{y}_i)$$

3. Repeat until convergence or max iterations

Mathematical Derivation - Weight Update

Error Definition: $e_i = y_i - \hat{y}_i$

Update Rules:

$$egin{aligned} \mathbf{w}^{(t+1)} &= \mathbf{w}^{(t)} + \eta e_i \mathbf{x}_i \ b^{(t+1)} &= b^{(t)} + \eta e_i \end{aligned}$$

Intuition:

- Correct prediction ($e_i = 0$): No update
- False positive ($e_i = -1$): Move boundary away from \mathbf{x}_i
- False negative ($e_i = +1$): Move boundary toward \mathbf{x}_i

Geometric Effect: Each update rotates the decision boundary to better classify the current

Convergence Theorem

Theoretical Guarantees

Perceptron Convergence Theorem: If the training data is linearly separable, the perceptron learning algorithm will converge to a solution in finite steps.

Key Conditions:

- 1. Linear separability: $\exists \mathbf{w}^*, b^*$ such that all examples are correctly classified
- 2. Finite margin: Minimum distance between examples and decision boundary > 0

Convergence Theorem

Theoretical Guarantees

Convergence Bound:

Number of mistakes
$$\leq \frac{R^2}{\gamma^2}$$

Where:

- R: Maximum distance of any example from origin
- γ : Margin (minimum distance to boundary)

Limitations of Single Perceptron

The XOR Problem Preview

XOR Truth Table:

x_1	x_2	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Problem: No single line can separate the XOR classes

Limitations of Single Perceptron

The XOR Problem Preview

Mathematical Proof: Assume linear separability

- $(0,0) \to 0: b < 0$
- $(0,1) \to 1: w_2 + b > 0$
- $(1,0) \to 1: w_1 + b > 0$
- $(1,1) \rightarrow 0: w_1 + w_2 + b < 0$

Contradiction: From conditions 2,3: $w_1, w_2 > -b > 0$

But condition 4 requires: $w_1 + w_2 < -b$

Summary: Class 1 Key Concepts

Biological Motivation:

 Neural networks inspired by biological neurons, Mathematical abstraction captures essential computation

Mathematical Foundations:

• Linear algebra: vectors, dot products, matrices, Perceptron model: $y = f(\mathbf{w} \cdot \mathbf{x} + b)$

Activation Functions:

• Step, sigmoid, tanh, ReLU with properties and trade-offs

Learning Algorithm:

• Perceptron learning rule with mathematical derivation, Convergence theorem for