
Machine Learning Practice

From Raw Data to Production Models

1

The Reality of ML Practice

Before you can type model = LogisticRegression().fit(X, y) :

• Feature Engineering

• Algorithm Selection

• Handling Overfitting

• Hyperparameter Tuning

• Performance Assessment

Reality: Most ML work happens before and after the model training line of code.

2

5.1 Feature Engineering

The Core Challenge

Product Manager:"We need to predict customer retention. Here are 5 years of
interaction logs."

Your Task: Transform raw logs into a labeled dataset

Feature Engineering: Converting raw data into informative feature vectors that enable
learning algorithms to build predictive models.

3

What Makes a Good Feature?

Informative Features: Those that allow learning algorithms to predict labels accurately

High Predictive Power: Strong correlation with target variable

Examples for customer retention:

• Subscription price → economic commitment

• Login frequency → engagement level

• Session duration → user satisfaction

• Response time → system quality perception

Key Insight: Everything measurable can become a feature, but not everything should.

4

5.1.1 One-Hot Encoding

Problem: Many algorithms require numerical inputs, but data often contains categorical
features

Solution: Convert categorical values into binary vectors

Example - Colors:

red = [1, 0, 0]
yellow = [0, 1, 0]
green = [0, 0, 1]

Why not use numbers? red=1, yellow=2, green=3 implies ordering and distance
relationships that don't exist.

5

5.1.2 Binning (Bucketing)

Purpose: Convert continuous features into categorical bins

When useful:

• Give learning algorithms "hints" about value ranges

• Reduce noise in continuous measurements

• Create interpretable thresholds

Example - Age binning:

Original: age = 7 years
Bins: [0-5], [6-10], [11-15]
Result: age_bin2 = 1, others = 0

Benefit: Algorithm learns "exact age doesn't matter within these ranges"
6

5.1.3 Normalization

Purpose: Scale features to standard range [0,1] or [-1,1]

Formula:

Why normalize?

• Faster learning: Prevents large-scale features from dominating gradients

• Numerical stability: Avoids computer precision issues with very large/small numbers

• Fair comparison: Features contribute proportionally to distance calculations

Example: Feature range [350, 1450] → [0, 1]

7

5.1.4 Standardization (Z-score)

Purpose: Rescale features to have µ=0, σ=1 (standard normal distribution)

Formula:

When to use standardization vs normalization:

• Standardization: Unsupervised learning, normally distributed data, presence of
outliers

• Normalization: Most other cases, bounded feature ranges preferred

Modern reality: Most algorithms are robust to different scales, but preprocessing still
helps.

8

5.1.5 Missing Data Strategies

Common approaches:

1. Remove examples with missing values (if dataset is large enough)

2. Use algorithms that handle missing values natively

3. Data imputation techniques

Imputation methods:

• Replace with mean/median of feature

• Replace with out-of-range value (e.g., -1 for [0,1] range)

• Replace with middle value (e.g., 0 for [-1,1] range)

• Regression-based: Use other features to predict missing values

9

5.1.6 Advanced Imputation

Regression-based imputation:

1. Treat missing feature as target variable

2. Use remaining features as predictors

3. Train regression model on complete examples

4. Predict missing values

Indicator variables:

• Add binary feature: "was original value missing?"

• Replace missing value with 0 or chosen constant

• Algorithm learns to handle missingness pattern

Critical: Use same imputation method for training and prediction data. 10

5.2 Algorithm Selection

Key Decision Factors

Explainability requirements:

• High accuracy "black boxes" (neural networks, ensembles)

• vs. Interpretable models (linear regression, decision trees)

Computational constraints:

• In-memory vs. out-of-memory datasets

• Training speed requirements

• Prediction speed requirements

11

5.2 Algorithm Selection

Key Decision Factors

Data characteristics:

• Number of features and examples

• Categorical vs. numerical features

• Linear vs. non-linear relationships

12

13

Training, Validation, and Test Sets

Three-way split necessity:

1. Training set: Build the model

2. Validation set: Choose algorithm and tune hyperparameters

3. Test set: Final assessment before production

Split proportions:

• Traditional: 70% / 15% / 15%

• Big data era: 95% / 2.5% / 2.5%

Why three sets? Prevent overfitting to evaluation data itself.

14

5.3 Underfitting vs. Overfitting

Underfitting (High Bias):

• Poor performance on training data

• Model too simple for the problem

• Features lack predictive power

Overfitting (High Variance):

• Great training performance, poor validation/test performance

• Model too complex for available data

• Too many features, too few examples

Goal: Find the sweet spot between underfitting and overfitting.

15

16

Solutions to Underfitting

Increase model complexity:

• Use more sophisticated algorithms

• Add polynomial features

• Increase neural network depth/width

Improve features:

• Engineer more informative features

• Add domain-specific transformations

• Collect additional relevant data

Example: Predicting cancer with height, blood pressure, heart rate → clearly insufficient
features

17

Solutions to Overfitting

Reduce model complexity:

• Simpler algorithms (linear vs. polynomial)

• Fewer neural network parameters

• Shallower decision trees

Data-based solutions:

• Collect more training examples

• Dimensionality reduction

• Feature selection

Regularization: Most widely used approach

18

5.5 Regularization

The Overfitting Problem

High-dimensional data + few examples = overfitting risk

Learning algorithm tries to fit training data perfectly by:

• Assigning non-zero weights to most features

• Learning noise and sampling artifacts

• Creating overly complex decision boundaries

Solution: Force algorithm to build simpler models through regularization.

19

L1 and L2 Regularization

L1 Regularization (Lasso):

L2 Regularization (Ridge):

Hyperparameter C: Controls regularization strength

• C = 0: No regularization

• Large C: Heavy regularization (risk of underfitting)
20

L1 vs. L2 Properties

L1 Regularization:

• Creates sparse models (many weights = 0)

• Automatic feature selection

• Better for interpretability

• Non-differentiable at zero

L2 Regularization:

• Keeps all features with small weights

• Better predictive performance

• Differentiable everywhere, computational advantages

Elastic Net: Combines L1 and L2 regularization 21

5.6 Model Performance Assessment

Regression Assessment

Mean Squared Error (MSE):

• Compute MSE on training set

• Compute MSE on test set

• Compare the two values

Overfitting indicator: Test MSE >> Training MSE

Baseline comparison: Model should outperform mean prediction

Solutions: Regularization, hyperparameter tuning, simpler models

22

5.6 Model Performance Assessment

R² (Coefficient of Determination):

Symbol Definitions: : Actual target value for example , : Predicted value for example
(y-hat), : Mean of all actual target values (y-bar), : Sum of Squared Residuals
(prediction errors), : Total Sum of Squares (variance from mean)

R² Interpretation:

• R² = 1: Perfect predictions (all variance explained)

• R² = 0: Model performs as well as mean baseline

• R² < 0: Model performs worse than mean baseline
23

Classification Metrics

Core assessment tools:

• Confusion Matrix

• Accuracy

• Precision/Recall

• ROC Curve and AUC

Binary classification focus (extends to multiclass)

Key insight: Different metrics matter for different problems

24

5.6.1 Confusion Matrix

Spam Detection Example:

 Predicted
 spam not_spam
Actual spam 23 1 (TP=23, FN=1)
 not_spam 12 556 (FP=12, TN=556)

Definitions:

• True Positives (TP): Correctly identified spam

• False Negatives (FN): Missed spam

• False Positives (FP): Incorrectly flagged as spam

• True Negatives (TN): Correctly identified not spam

25

5.6.2 Precision and Recall

Precision: (of predicted positives, how many were correct?)

Recall: (of actual positives, how many were found?)

Document search analogy:

• Precision: Relevant documents / All returned documents

• Recall: Relevant documents returned / All relevant documents

Trade-off: Usually cannot maximize both simultaneously

26

Precision/Recall in Practice

Spam detection priorities:

• High precision: Avoid blocking legitimate emails

• Lower recall acceptable: Some spam in inbox is tolerable

Medical screening priorities:

• High recall: Don't miss diseases

• Lower precision acceptable: False alarms can be resolved

Tuning methods:

• Adjust class weights

• Modify decision thresholds

• Hyperparameter optimization 27

5.6.3 Accuracy

Definition:

When useful: All classification errors are equally costly

When problematic: Imbalanced classes or different error costs

Example: 99% non-spam emails → 99% accuracy by always predicting "not spam"

28

5.6.4 Cost-Sensitive Accuracy

Problem: Different types of errors have different costs

Solution: Assign costs to FP and FN, weight accordingly

Spam example:

• Cost of FP (blocking good email): High

• Cost of FN (missing spam): Low

Implementation: Multiply FP and FN counts by respective costs before calculating
accuracy

29

5.6.5 ROC Curve and AUC

ROC Curve: Plot of True Positive Rate vs. False Positive Rate

True Positive Rate: (same as Recall)

False Positive Rate:

Construction: Vary decision threshold, plot (FPR, TPR) points

AUC (Area Under Curve): Single number summary of classifier performance

Perfect classifier: AUC = 1.0
Random classifier: AUC = 0.5

30

31

Summary: From Raw Data to Model

Essential workflow:

1. Feature engineering → Create informative representations

2. Algorithm selection → Match method to problem constraints

3. Data splitting → Enable unbiased evaluation

4. Regularization → Control model complexity

5. Performance assessment → Choose appropriate metrics

Key insight: Most ML success comes from careful data preparation and evaluation, not just
algorithm choice.

32

