
Unsupervised Learning

Dimensionality Reduction
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The Modern Reality

High-dimensional data is everywhere:

• Modern ML algorithms (ensembles, neural networks) handle millions of features

• GPUs make high-dimensional computation feasible

• Dimensionality reduction used less than in the past

But we still need it for:

1. Data visualization - humans can only see 3D maximum

2. Interpretable models - when limited to simple algorithms

3. Noise reduction - removing redundant/correlated features
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When Dimensionality Reduction Helps

Scenario 1: Data Visualization

• Need to understand high-dimensional data patterns

• Maximum 2D/3D plots for human interpretation

• Explore data structure and relationships

Scenario 2: Interpretable Models

• Limited to decision trees or linear regression , Need to understand which features
matter, Simpler models with reduced dimensions

Scenario 3: Data Quality

• Remove redundant features, Reduce noise in data, Improve model interpretability
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Four Main Techniques

1. Principal Component Analysis (PCA)

• Linear method, finds maximum variance directions

• Fast computation, interpretable results

• Standard choice for linear dimensionality reduction

2. t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Non-linear method for visualization

• Preserves local neighborhood structure

• Computationally intensive, best for exploration
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Four Main Techniques

3. Uniform Manifold Approximation and Projection (UMAP)

• Non-linear method, faster than t-SNE

• Balances local and global structure preservation

• Suitable for both visualization and preprocessing

4. Autoencoders

• Neural network approach

• Learns complex non-linear mappings

• Will be covered later
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Principal Component Analysis (PCA)

Finding Directions of Maximum Variance
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PCA: Core Intuition

Objective: Find new coordinate system based on data variance

Algorithm:

1. First component: Direction of highest variance in data

2. Second component: Orthogonal to first, second highest variance

3. Third component: Orthogonal to first two, third highest variance

4. Continue for all dimensions

Output: New axes (principal components) ranked by variance captured
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PCA: Visual Example

Original 2D data → 1D projection

Step 1: Identify principal components

• PC1: Direction of maximum variance

• PC2: Orthogonal direction

Step 2: Project data onto first component

• Each point becomes single coordinate

• Dimensionality reduced from 2D → 1D

Key insight: Arrow length = variance in that direction
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PCA: Practical Benefits

Dimensionality reduction:

• Keep first  principal components

• Discard components with low variance

Typical pattern:

• First 2-3 components capture 70-90% of variance

• Remaining components contain mostly noise

Visualization:

• Project high-dimensional data to 2D/3D

• Retain most important patterns in data
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PCA: Mathematical Foundation

Objective: Find directions of maximum variance

Principal components are eigenvectors of covariance matrix

Variance captured by each component:

• PC1 captures most variance

• PC2 captures second most (orthogonal to PC1)

• Total variance = sum of all eigenvalues

Projection formula:

Where  contains first  principal components
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t-SNE: The Visualization Specialist

Preserving Local Neighborhoods
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t-SNE: Core Philosophy

Approach: Convert similarities to probabilities, then match distributions

Two-step process:

1. Original space: Define probability that points are neighbors

2. Reduced space: Match these probability distributions

Goal: Points close in high dimensions remain close in low dimensions

Primary use: Visualization and cluster structure exploration
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t-SNE: Probability Definitions

Original space similarity (Gaussian):

Symmetric version:

Reduced space similarity (t-distribution):

Why t-distribution? Heavy tails solve "crowding problem"
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t-SNE: Optimization Process

Objective: Minimize KL divergence between P and Q

Gradient descent update:

Intuition:

• Spring analogy: Attractive and repulsive forces

• Points want to match their probability relationships
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t-SNE: Key Properties

Advantages:

• Visualization quality: Clear cluster separation

• Non-linear mapping: Captures complex manifold structure

• Local preservation: Maintains neighborhood structure

Limitations:

• Computational cost: O(n²) complexity, slow for large datasets

• Non-deterministic: Different runs produce different results

• Parameter sensitivity: Perplexity choice affects results

• Global structure loss: Only local structure preserved

Appropriate use: Exploratory data visualization, not preprocessing
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UMAP: Balanced Non-linear Approach

Preserving Local and Global Structure
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UMAP: Core Philosophy

Approach: Preserve local neighborhoods in reduced space

Motivation:

• PCA captures only linear relationships

• Real data often has non-linear structure

• Local similarity important, but global structure also matters

UMAP method:

1. Define similarity metric in original space

2. Define same metric in reduced space

3. Minimize difference between similarity structures

Machine Learning

Subhankar Mishra | smishra@niser.ac.in 18

mailto:smishra@niser.ac.in
mailto:smishra@niser.ac.in


UMAP: Similarity Metric

Combined similarity measure:

Individual similarity:

Where:

•  = Euclidean distance

•  = distance to closest neighbor

•  = distance to -th closest neighbor

Machine Learning

Subhankar Mishra | smishra@niser.ac.in 19

mailto:smishra@niser.ac.in
mailto:smishra@niser.ac.in


UMAP: Optimization Process

Goal: Match similarity structures

Original space similarity:
Reduced space similarity:

Cross-entropy loss:

Optimization: Use gradient descent to minimize 
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UMAP: Key Properties

Advantages:

• Non-linear mapping: Captures complex data structure

• Local preservation: Maintains neighborhood relationships

• Computational efficiency: Faster than t-SNE

• Reproducibility: More consistent results across runs

Properties:

• Similarity metric bounded [0, 1]

• Symmetric similarity: 

• Treats similarities as probability distributions
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Method Comparison

Performance and Use Cases
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Method Comparison: MNIST Example

Dataset: 70,000 handwritten digits, 10 classes

Cluster separation quality:

1. t-SNE: Clear cluster separation, computationally expensive

2. UMAP: Similar separation quality, faster computation

3. PCA: Linear projection, limited class separation

Computational performance:

• PCA: Fastest (seconds)

• UMAP: Medium speed (minutes)

• t-SNE: Slowest (hours for large datasets)

Note: Both t-SNE and UMAP achieve class separation without using labels
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MNIST Example Comparison
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Choosing the Right Method

Use PCA when:

• Need fast, simple solution

• Data has linear structure

• Want interpretable components

• Preparing data for other algorithms

Use t-SNE when:

• Primary goal is visualization

• Dataset is small-medium (<10k points)

• Want to explore cluster structure

• Don't need reproducible results
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Choosing the Right Method

Use UMAP when:

• Need both speed and quality

• Large datasets (>10k points)

• Want to use reduced data for modeling

• Need reproducible results

Use Autoencoders when:

• Very complex non-linear relationships

• Need reconstruction capability

• Have GPU resources available
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Practical Guidelines

Before dimensionality reduction:

1. Scale features - different units affect distance metrics

2. Remove outliers - can distort projections

3. Consider feature selection - remove irrelevant features first

Parameter tuning:

• PCA: Choose number of components (elbow method)

• t-SNE: Tune perplexity (5-50), learning rate (10-1000)

• UMAP: Tune number of neighbors, minimum distance

• All methods: Validate on downstream task
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Validation Strategies

For visualization:

• Do clusters make domain sense?

• Are known relationships preserved?

• Can you explain the structure?

For model building:

• Cross-validate downstream model

• Compare performance vs. original features

• Check if interpretability improved

Common metrics:

• Explained variance ratio (PCA)

Reconstruction error
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Common Pitfalls

Pitfall 1: "More dimensions is always better"

• Reality: Noise dimensions hurt performance

• Solution: Use validation to find optimal dimensions

Pitfall 2: "Linear methods are obsolete"

• Reality: PCA often works well and is interpretable

• Solution: Try simple methods first

Pitfall 3: "Visualization = analysis"

• Reality: 2D projections can be misleading

• Solution: Validate findings with quantitative methods
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Summary: Key Takeaways

When to use dimensionality reduction:

• Data visualization needs

• Interpretable model requirements

• Noise reduction goals

Method selection:

• PCA: Linear structure, speed, interpretability

• t-SNE: Visualization, small datasets, cluster exploration

• UMAP: Non-linear structure, speed, general purpose

• Autoencoders: Complex patterns, reconstruction needs

Success factors:

Proper preprocessing and scaling
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Next Steps: Practice and Exploration

Immediate actions:

1. Try all three methods on same dataset

2. Compare visualizations - what do you see?

3. Validate with downstream tasks

Advanced topics:

• Factor Analysis: Probabilistic PCA

• Non-negative Matrix Factorization: Parts-based representation

• Isomap: Geodesic distance preservation

• LLE: Locally Linear Embedding

Remember: Dimensionality reduction is a tool, not a goal!
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Questions for Discussion

1. When might high dimensions actually help your model?

2. How do you validate that a 2D visualization represents the real data structure?

3. What are the trade-offs between speed and quality in dimensionality reduction?

4. How would you explain PCA results to a non-technical stakeholder?

The best dimensionality reduction reveals meaningful patterns in your data.
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