
Fundamental Algorithms

Chapter 3: Five Essential Supervised Learning Algorithms
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Gradient Descent

Why Start Here?
By reading modern machine learning literature, you often encounter references to gradient
descent or stochastic gradient descent. These are the two most frequently used
optimization algorithms when the optimization criterion is differentiable.

Universal Tool:

• Linear and Logistic Regression

• Support Vector Machines

• Neural Networks

• Most modern ML algorithms
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What is Gradient Descent?
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What is Gradient Descent?

Definition: An iterative optimization algorithm for finding the minimum of a function.

Core Idea:

• Start at some random point

• Take steps proportional to the negative gradient

• Move "downhill" toward the minimum

Mathematical Intuition:

where  is the learning rate and  is the gradient
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Convex vs Non-Convex Functions

Convex Functions (Logistic Regression, Linear Regression, SVM):

• Have only one minimum (global)

• Gradient descent guaranteed to find it

• Bowl-shaped optimization landscape

Non-Convex Functions (Neural Networks):

• Multiple local minima

• Finding local minimum often sufficient in practice

• Complex optimization landscape

Key Insight: Even when global optimum isn't guaranteed, gradient descent works
remarkably well!
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Gradient Descent: Practical Example

Dataset: Company advertising spending vs sales

Company | Spendings (Crores) | Sales (Units)
   1    |     37.8           |    22.1
   2    |     39.3           |    10.4  
   3    |     45.9           |     9.3
   4    |     41.3           |    18.5
  ...   |      ...           |     ...

Goal: Build model  to predict sales from spending

Problem: What are optimal values for  and ?
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The Mathematical Foundation

Objective: Minimize Mean Squared Error 

Step 1: Calculate partial derivatives (gradients)

Step 2: Update parameters
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Chain Rule in Action

Why these derivatives? For term  with respect to :

Chain Rule:  where:

• 

• 

Step-by-step:

1. 

2. 

3. 

Result:
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Gradient Descent: Python Implementation

def update_w_and_b(spendings, sales, w, b, alpha):
"""

    One epoch of gradient descent
    alpha: learning rate (step size)
    """
    dl_dw = 0.0 # Gradient w.r.t. w
    dl_db = 0.0 # Gradient w.r.t. b
    N = len(spendings)
    

# Calculate gradients
for i in range(N):

# Prediction error
        error = sales[i] - (w * spendings[i] + b)
        

# Accumulate gradients
        dl_dw += -2 * spendings[i] * error
        dl_db += -2 * error
    

# Update parameters
    w = w - (1/float(N)) * dl_dw * alpha
    b = b - (1/float(N)) * dl_db * alpha
    

return w, b 9



Training Loop and Convergence

def train_linear_regression(spendings, sales, epochs=1000, alpha=0.0001):
# Initialize parameters

    w, b = 0.0, 0.0
    losses = []
    

for epoch in range(epochs):
# Update parameters

        w, b = update_w_and_b(spendings, sales, w, b, alpha)
        

# Calculate current loss
        predictions = [w * x + b for x in spendings]
        loss = sum((y - pred)**2 for y, pred in zip(sales, predictions)) / len(sales)
        losses.append(loss)
        

# Print progress
if epoch % 100 == 0:

print(f"Epoch {epoch}: Loss = {loss:.4f}, w = {w:.4f}, b = {b:.4f}")
    

return w, b, losses
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Training Loop and Convergence

Key Concepts:

• Iteration Every time you look at example (01 or 01 batch)

• Epoch: One pass through all training examples

• Convergence: When  and  stop changing significantly
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Learning Rate: The Critical Hyperparameter

Too Small (  too small):

• Very slow convergence, Many epochs needed

• Safe but inefficient

Too Large (  too large):

• Overshooting the minimum, Oscillations or divergence

• Fast but unstable

Just Right:

• Steady decrease in loss

• Reasonable convergence speed

• Stable parameter updates 12



Variants of Gradient Descent

Three Main Types Based on Training Data Usage:

1. Batch Gradient Descent (BGD): - Uses entire dataset for each parameter update

• Most accurate gradients, guaranteed convergence, Slow for large datasets, high
memory usage

2. Stochastic Gradient Descent (SGD): - Uses one sample for each parameter update

• Fast, low memory, adds beneficial noise, Noisy gradients, may not converge exactly

3. Mini-Batch Gradient Descent: - Uses small batches (e.g., 32, 64, 128 samples)

• Best of both worlds - most commonly used, Good balance of speed, accuracy, and
memory
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Batch vs Mini-Batch vs SGD: Comparison

Method Batch Size Speed Memory Convergence Noise

Batch GD Full dataset (N) Slow High Smooth None

Mini-Batch GD 32-512 Fast Medium Stable Some

SGD 1 Fastest Low Noisy High

Modern Practice:

• Mini-batch is the standard (typically 32-256)

• Enables parallelization on GPUs

• Good compromise between accuracy and efficiency
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Mini-Batch Implementation

def mini_batch_gradient_descent(X, y, batch_size=32, epochs=100, alpha=0.01):
    n_samples, n_features = X.shape
    w = np.random.normal(0, 0.01, n_features)
    b = 0
    

for epoch in range(epochs):
# Shuffle data each epoch

        indices = np.random.permutation(n_samples)
        X_shuffled = X[indices]
        y_shuffled = y[indices]
        

# Process mini-batches
for i in range(0, n_samples, batch_size):

# Get current mini-batch
            batch_end = min(i + batch_size, n_samples)
            X_batch = X_shuffled[i:batch_end]
            y_batch = y_shuffled[i:batch_end]
            

# Compute gradients on mini-batch
            predictions = X_batch @ w + b
            errors = predictions - y_batch
            
            dw = (1/len(X_batch)) * X_batch.T @ errors
            db = (1/len(X_batch)) * np.sum(errors)
            

# Update parameters
            w -= alpha * dw
            b -= alpha * db
    

return w, b 15



Why Mini-Batch Works So Well

Computational Efficiency:

• Vectorization: Matrix operations faster than loops

• GPU Parallelization: Perfect for modern hardware

• Memory Management: Fits in GPU memory

Statistical Benefits:

• Noise Reduction: Averaging over batch reduces variance

• Regularization Effect: Some noise helps generalization

• Escape Local Minima: Noise helps escape shallow minima
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Modern Variants of Gradient Descent

Advanced Optimizers:

• Adagrad: Adapts learning rate per parameter

• Momentum: Accelerates in relevant directions

• RMSprop: Addresses Adagrad's learning rate decay

• Adam: Combines momentum and adaptive learning rates

Key Insight: These are not ML algorithms - they are optimization solvers
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