Fundamental Algorithms

Chapter 3: Five Essential Supervised Learning Algorithms

Gradient Descent

Why Start Here?

By reading modern machine learning literature, you often encounter references to **gradient descent** or **stochastic gradient descent**. These are the two most frequently used optimization algorithms when the optimization criterion is differentiable.

Universal Tool:

- Linear and Logistic Regression
- Support Vector Machines
- Neural Networks
- Most modern ML algorithms

What is Gradient Descent?

What is Gradient Descent?

Definition: An iterative optimization algorithm for finding the minimum of a function.

Core Idea:

- Start at some random point
- Take steps proportional to the negative gradient
- Move "downhill" toward the minimum.

Mathematical Intuition:

$$\mathbf{w}_{new} = \mathbf{w}_{old} - lpha
abla f(\mathbf{w}_{old})$$

where α is the **learning rate** and ∇f is the gradient

Convex vs Non-Convex Functions

Convex Functions (Logistic Regression, Linear Regression, SVM):

- Have only one minimum (global)
- Gradient descent guaranteed to find it
- Bowl-shaped optimization landscape

Non-Convex Functions (Neural Networks):

- Multiple local minima
- Finding local minimum often sufficient in practice
- Complex optimization landscape

Key Insight: Even when global optimum isn't guaranteed, gradient descent works remarkably well!

Gradient Descent: Practical Example

Dataset: Company advertising spending vs sales

Company	Spendings (Cr	ores) Sales (Units)	
1	37.8	22.1	
2	39.3	10.4	
3	i 45 . 9	j 9 . 3	
4	41.3	j 18 . 5	
	j		
		·	

Goal: Build model f(x) = wx + b to predict sales from spending

Problem: What are optimal values for w and b?

The Mathematical Foundation

Objective: Minimize Mean Squared Error $\ell = \frac{1}{N} \sum_{i=1}^{N} (y_i - (wx_i + b))^2$

Step 1: Calculate partial derivatives (gradients)

$$rac{\partial \ell}{\partial w} = rac{1}{N} \sum_{i=1}^N -2x_i (y_i - (wx_i + b))$$

$$rac{\partial \ell}{\partial b} = rac{1}{N} \sum_{i=1}^N -2(y_i - (wx_i + b))$$

Step 2: Update parameters

$$w_i = w_{i-1} - lpha rac{\partial \ell}{\partial w}, b_i = b_{i-1} - lpha rac{\partial \ell}{\partial b}$$

Chain Rule in Action

Why these derivatives? For term $(y_i - (wx_i + b))^2$ with respect to w:

Chain Rule: $f = f_2(f_1)$ where:

- $\bullet \ f_1 = y_i (wx_i + b)$
- $f_2 = f_1^2$

Step-by-step:

1.
$$rac{\partial f_2}{\partial f_1}=2f_1=2(y_i-(wx_i+b))$$

$$2.rac{\partial f_1}{\partial w}=-x_i$$

3.
$$rac{\partial f}{\partial w}=rac{\partial f_2}{\partial f_1}\cdotrac{\partial f_1}{\partial w}=2(y_i-(wx_i+b))\cdot(-x_i)$$

Result:
$$rac{\partial \ell}{\partial w} = rac{1}{N} \sum_{i=1}^N -2x_i (y_i - (wx_i + b))$$

Gradient Descent: Python Implementation

```
def update_w_and_b(spendings, sales, w, b, alpha):
    One epoch of gradient descent
    alpha: learning rate (step size)
   dl_dw = 0.0 # Gradient w.r.t. w
   dl_db = 0.0 # Gradient w.r.t. b
   N = len(spendings)
   # Calculate gradients
    for i in range(N):
       # Prediction error
        error = sales[i] - (w * spendings[i] + b)
       # Accumulate gradients
        dl_dw += -2 * spendings[i] * error
        dl db += -2 * error
   # Update parameters
   w = w - (1/float(N)) * dl_dw * alpha
    b = b - (1/float(N)) * dl_db * alpha
    return w, b
```

Training Loop and Convergence

```
def train_linear_regression(spendings, sales, epochs=1000, alpha=0.0001):
    # Initialize parameters
    W, b = 0.0, 0.0
    losses = []
    for epoch in range(epochs):
        # Update parameters
        w, b = update_w_and_b(spendings, sales, w, b, alpha)
        # Calculate current loss
        predictions = [w * x + b \text{ for } x \text{ in spendings}]
        loss = sum((y - pred)**2 for y, pred in zip(sales, predictions)) / len(sales)
        losses.append(loss)
        # Print progress
        if epoch % 100 == 0:
            print(f"Epoch {epoch}: Loss = {loss:.4f}, w = \{w:.4f\}, b = \{b:.4f\}")
    return w, b, losses
```

Training Loop and Convergence

Key Concepts:

- Iteration Every time you look at example (01 or 01 batch)
- **Epoch:** One pass through all training examples
- ullet Convergence: When w and b stop changing significantly

Learning Rate: The Critical Hyperparameter

Too Small (α too small):

- Very slow convergence, Many epochs needed
- Safe but inefficient

Too Large (α too large):

- Overshooting the minimum, Oscillations or divergence
- Fast but unstable

Just Right:

- Steady decrease in loss
- Reasonable convergence speed
- Stable parameter updates

Variants of Gradient Descent

Three Main Types Based on Training Data Usage:

- 1. Batch Gradient Descent (BGD): Uses entire dataset for each parameter update
 - Most accurate gradients, guaranteed convergence, Slow for large datasets, high memory usage
- 2. Stochastic Gradient Descent (SGD): Uses one sample for each parameter update
 - Fast, low memory, adds beneficial noise, Noisy gradients, may not converge exactly
- 3. Mini-Batch Gradient Descent: Uses small batches (e.g., 32, 64, 128 samples)
 - Best of both worlds most commonly used, Good balance of speed, accuracy, and memory

Batch vs Mini-Batch vs SGD: Comparison

Method	Batch Size	Speed	Memory	Convergence	Noise
Batch GD	Full dataset (N)	Slow	High	Smooth	None
Mini-Batch GD	32-512	Fast	Medium	Stable	Some
SGD	1	Fastest	Low	Noisy	High

Modern Practice:

- Mini-batch is the standard (typically 32-256)
- Enables parallelization on GPUs
- Good compromise between accuracy and efficiency

Mini-Batch Implementation

```
def mini batch gradient descent(X, y, batch_size=32, epochs=100, alpha=0.01):
    n samples, n features = X.shape
   w = np.random.normal(0, 0.01, n features)
    b = 0
    for epoch in range(epochs):
        # Shuffle data each epoch
        indices = np.random.permutation(n_samples)
        X shuffled = X[indices]
        y shuffled = y[indices]
        # Process mini-batches
        for i in range(0, n_samples, batch_size):
            # Get current mini-batch
            batch_end = min(i + batch_size, n_samples)
            X_batch = X_shuffled[i:batch_end]
            v batch = v shuffled[i:batch end]
            # Compute gradients on mini-batch
            predictions = X batch @ w + b
            errors = predictions - y batch
            dw = (1/len(X_batch)) * X_batch.T @ errors
            db = (1/len(X batch)) * np.sum(errors)
            # Update parameters
            w -= alpha * dw
            b -= alpha * db
    return w, b
```

Why Mini-Batch Works So Well

Computational Efficiency:

- Vectorization: Matrix operations faster than loops
- GPU Parallelization: Perfect for modern hardware
- Memory Management: Fits in GPU memory

Statistical Benefits:

- Noise Reduction: Averaging over batch reduces variance
- Regularization Effect: Some noise helps generalization
- Escape Local Minima: Noise helps escape shallow minima

Modern Variants of Gradient Descent

Advanced Optimizers:

- Adagrad: Adapts learning rate per parameter
- Momentum: Accelerates in relevant directions
- RMSprop: Addresses Adagrad's learning rate decay
- Adam: Combines momentum and adaptive learning rates

Key Insight: These are not ML algorithms - they are optimization solvers