Chapter 3: Fundamental Algorithms

Support Vector Machine (SVM)

SVM Optimization Review

Linear Separation Support Vectors

SVM Optimization Review

Original SVM Constraints:

$$ullet \mathbf{w}^T\mathbf{x}_i - b \geq +1 ext{ if } y_i = +1$$

$$ullet \mathbf{w}^T\mathbf{x}_i - b \leq -1 ext{ if } y_i = -1$$

Objective: Minimize $\frac{1}{2}||\mathbf{w}||^2$

Combined Constraint: $y_i(\mathbf{w}^T\mathbf{x}_i - b) \geq 1$

Optimization Problem:

$$\min rac{1}{2} ||\mathbf{w}||^2 ext{ subject to } y_i(\mathbf{x}_i^T\mathbf{w} - b) - 1 \geq 0$$

SVM: Two Critical Questions

We already considered SVM basics, so this section fills important gaps:

1. Noisy Data Problem:

- What if no hyperplane can perfectly separate positive from negative examples?
- How to handle outliers and mislabeled examples?

2. Non-Linear Data Problem:

- What if data cannot be separated by a straight line?
- How to handle circular or curved decision boundaries?

Real World: Most data has both challenges!

SVM: Two Critical Questions

The Problem Illustrated

Left: Noisy Data

- Data could be separated by straight line
- But outliers prevent perfect separation
- Need flexibility to handle noise

Right: Non-Linear Data

- Decision boundary is circular, not linear
- Linear hyperplane cannot solve this
- Need transformation to higher dimensions

Goal: Extend SVM to handle both scenarios

Problem 1: Dealing with Noise

Solution: Introduce Hinge Loss Function

Hinge Loss:

$$\ell_{\mathrm{hinge}}(y, f(\mathbf{x})) = \max(0, 1 - y \cdot f(\mathbf{x}))$$

Properties:

- Zero loss if constraints satisfied (correct side of boundary)
- Linear penalty proportional to distance from boundary
- Robust to outliers compared to squared loss

Interpretation:

- If $y \cdot f(\mathbf{x}) \geq 1$: No penalty (correct classification with margin)
- If $y \cdot f(\mathbf{x}) < 1$: Linear penalty increases with distance

Soft-Margin SVM

New Cost Function:

$$C||\mathbf{w}||^2 + \sum_{i=1}^N \max(0, 1-y_i(\mathbf{w}^T\mathbf{x}_i-b))$$

Two Competing Objectives:

- 1. **Maximize margin:** Minimize $||\mathbf{w}||^2$
- 2. Minimize errors: Minimize hinge loss

Hyperparameter C controls trade-off:

- **High C:** Focus on classification accuracy (small margin)
- Low C: Focus on large margin (allow some errors)

Understanding Parameter C

High C (Focus on Accuracy):

- Second term dominates
- Algorithm tries to classify all training points correctly
- May lead to overfitting, Smaller margin

Low C (Focus on Generalization):

- First term dominates
- Algorithm allows some misclassification
- Larger margin for better generalization, More robust to noise

Sweet Spot: Balance between training accuracy and generalization

Problem 2: Non-Linear Data

Challenge: Data cannot be separated by hyperplane in original space

Solution: Transform to higher-dimensional space where linear separation is possible

Key Insight: Many non-linear problems become linear in higher dimensions

Example Transformation:

- 2D input: $\mathbf{x} = [q, p]$
- 3D mapping: $\phi([q,p])=[q^2,\sqrt{2}qp,p^2]$
- Result: Circular boundary becomes linear in 3D

Dealing with Non Linear Data

The Kernel Trick

Problem with Explicit Transformation:

- Don't know which mapping ϕ will work
- High-dimensional transformations are computationally expensive
- Need to try many different mappings

Kernel Trick Solution:

- Work in high-dimensional space without explicit transformation
- Only need dot products $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$
- Replace with kernel function $k(\mathbf{x}_i, \mathbf{x}_j)$

Magic: Get same result as high-dimensional dot product using simple operation on original vectors

SVM Dual Formulation

Lagrange Multipliers Transform:

Original problem becomes:

$$\max_{lpha_1...lpha_N} \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{i=1}^N \sum_{k=1}^N y_i lpha_i (\mathbf{x}_i \cdot \mathbf{x}_k) y_k lpha_k$$

Subject to:

$$\sum_{i=1}^N lpha_i y_i = 0 ext{ and } lpha_i \geq 0$$

Key Observation: Only uses dot products $\mathbf{x}_i \cdot \mathbf{x}_k$

Kernel Substitution: Replace $\mathbf{x}_i \cdot \mathbf{x}_k$ with $k(\mathbf{x}_i, \mathbf{x}_k)$

Kernel Trick

Kernel Function Examples

Linear Kernel:

$$k(\mathbf{x},\mathbf{x}') = \mathbf{x}^T\mathbf{x}'$$

Polynomial Kernel:

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^d$$

Quadratic Example:

- ullet Instead of transforming $(q_1,p_1) o (q_1^2,\sqrt{2}q_1p_1,p_1^2)$
- ullet Simply compute $(q_1q_2+p_1p_2)^2$
- Same result, much faster!

Kernel Trick: Mathematical Insight

Key Insight: We only need dot-products, not explicit transformations!

Example Transformation:

- ullet Original vectors: (q_1,p_1) and (q_2,p_2)
- Explicit transformation:

$$(q_1,p_1) o (q_1^2,\sqrt{2}q_1p_1,p_1^2)$$

$$(q_2,p_2) o (q_2^2,\sqrt{2}q_2p_2,p_2^2)$$

ullet Dot-product result: $(q_1^2q_2^2+2q_1q_2p_1p_2+p_1^2p_2^2)$

Kernel Trick Alternative:

- ullet Simple operation: $(q_1q_2+p_1p_2)^2$
- ullet Same result: $(q_1^2q_2^2+2q_1q_2p_1p_2+p_1^2p_2^2)$

RBF (Gaussian) Kernel

Most Popular Kernel:

$$k(\mathbf{x},\mathbf{x}') = \exp\left(-rac{||\mathbf{x}-\mathbf{x}'||^2}{2\sigma^2}
ight)$$

Properties:

- Infinite-dimensional feature space
- Smooth decision boundaries
- Local influence: Similar points have high kernel values

RBF (Gaussian) Kernel

Most Popular Kernel:

$$k(\mathbf{x},\mathbf{x}') = \exp\left(-rac{||\mathbf{x}-\mathbf{x}'||^2}{2\sigma^2}
ight)$$

Hyperparameter σ :

- Small σ : Curvy, complex boundaries (high variance)
- Large σ : Smooth, simple boundaries (high bias)

Euclidean Distance:

$$||\mathbf{x} - \mathbf{x}'||^2 = \sum_{j=1}^D (x_j - x_j')^2$$

SVM Decision Function

Final Prediction:

$$f(\mathbf{x}) = ext{sign}\left(\sum_{i=1}^N lpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b
ight)$$

Support Vectors:

- Training points with $\alpha_i>0$
- Only these points affect the decision boundary
- Typically small subset of training data

Sparsity: Most $\alpha_i = 0$, leading to efficient predictions

SVM Hyperparameter Summary

C (Regularization Parameter):

- Controls margin vs accuracy trade-off
- Higher C → More complex model, Lower C → Simpler model

Kernel Choice:

- Linear: For linearly separable data
- Polynomial: For moderate non-linearity
- **RBF:** For complex non-linear patterns

RBF Parameter σ :

- Controls smoothness of decision boundary
- Cross-validation typically used for selection

SVM: Strengths and Limitations

Strengths:

- Effective in high-dimensional spaces
- Memory efficient (uses only support vectors)
- Versatile (different kernels for different data)
- Works well with small datasets

Limitations:

- No probability estimates (only classifications), Sensitive to feature scaling
- Slow on large datasets (quadratic in training size)
- Choice of kernel and parameters can be tricky

Best Use Cases: Medium-sized datasets with complex decision boundaries

SVM Implementation

Check the implementation on Notebook