Chapter 3 : Fundamental Algorithms

Support Vector Machine (SVM)
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SVM Optimization Review

Original SVM Constraints:

e wix;, —b> +1ify; = +1

e wix; —b< —1lify; = —1
Objective: Minimize - ||w||?
Combined Constraint: y;(wx; — b) > 1

Optimization Problem:

1

min EHWH2 subject to y;(x 1w —b) —1>0



SVM: Two Critical Questions

We already considered SVM basics, so this section fills important gaps:
1. Noisy Data Problem:

e What if no hyperplane can perfectly separate positive from negative examples?

e How to handle outliers and mislabeled examples?
2.Non-Linear Data Problem:

e \What if data cannot be separated by a straight line?

e How to handle circular or curved decision boundaries?

Real World: Most data has both challenges!
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The Problem lllustrated

Left: Noisy Data

e Data could be separated by straight line
e But outliers prevent perfect separation

o Need flexibility to handle noise
Right: Non-Linear Data

e Decision boundary is circular, not linear
e Linear hyperplane cannot solve this

o Need transformation to higher dimensions

Goal: Extend SVM to handle both scenarios



Problem 1: Dealing with Noise

Solution: Introduce Hinge Loss Function
Hinge Loss:

Lhinge(y, f(x)) = max(0,1 —y - f(x))
Properties:

e Zero loss if constraints satisfied (correct side of boundary)
e Linear penalty proportional to distance from boundary

e Robust to outliers compared to squared loss
Interpretation:

e Ify- f(x) > 1:No penalty (correct classification with margin)

e Ify- f(x) < 1:Linear penalty increases with distance



Soft-Margin SVM

New Cost Function:

N
Cliw|l* + 3 max(0,1 — yi(w"x; — b))
=1

2

Two Competing Objectives:

1. Maximize margin: Minimize ||w||?

2. Minimize errors: Minimize hinge loss
Hyperparameter C controls trade-off:

 High C: Focus on classification accuracy (small margin)

e Low C: Focus on large margin (allow some errors)



Understanding Parameter C

High C (Focus on Accuracy):

e Second term dominates
e Algorithm tries to classify all training points correctly

o May lead to overfitting, Smaller margin
Low C (Focus on Generalization):

e Firstterm dominates
e Algorithm allows some misclassification

e Larger margin for better generalization, More robust to noise

Sweet Spot: Balance between training accuracy and generalization



Problem 2: Non-Linear Data

Challenge: Data cannot be separated by hyperplane in original space

Solution: Transform to higher-dimensional space where linear separation is possible
Key Insight: Many non-linear problems become linear in higher dimensions
Example Transformation:

e 2Dinput:x = [q, p|

« 3D mapping: ¢([g, p]) = [¢%, V2qp, p*]
e Result: Circular boundary becomes linear in 3D
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The Kernel Trick

Problem with Explicit Transformation:

e Don't know which mapping ¢ will work
e High-dimensional transformations are computationally expensive

e Need to try many different mappings
Kernel Trick Solution:

e Work in high-dimensional space without explicit transformation
e Only need dot products ¢(x;) - ¢(x;)

o Replace with kernel function k(x;, x ;)

Magic: Get same result as high-dimensional dot product using simple operation on original
vectors
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SVM Dual Formulation

Lagrange Multipliers Transform:
Original problem becomes:

maX E az - E E yzaz
a1...00N

1=1 k=1

Subject to:
N
Zaiyi —Qanda; >0
i=1
Key Observation: Only uses dot products x; - xp,

Kernel Substitution: Replace x; - xj, with k(x;, Xx)

ykak
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Kernel Trick

Individual Transformation Individual Vectors (in
Vectors High Dimensional Space)

*Operation
Operation

Kernel Trick a

Output in | n
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Kernel Function Examples

Linear Kernel:
k(x,x') =x'x’
Polynomial Kernel:
k(x,x') = (xTx' +1)¢
Quadratic Example:
e Instead of transforming (q1, p1) — (q12, \/5(11]91,29%)

e Simply compute (q1g2 + p1p2)°
e Same result, much faster!
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Kernel Trick: Mathematical Insight

Key Insight: We only need dot-products, not explicit transformations!
Example Transformation:

e Original vectors: (q1, p1) and (g2, p2)
e Explicit transformation:
> (q1,p1) = (¢f, v2q1p1,p})
o (g2,p2) — (q2,v/2qapa, p2)
o Dot-product result: (g7q> + 2q1q2p1p2 + D:p5)

Kernel Trick Alternative:

 Simple operation: (¢q1q2 + 1?1}?2)2
e Same result: (q12q22 + 2q192p1p2 + p%pg)
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RBF (Gaussian) Kernel

Most Popular Kernel:

Properties:

e Infinite-dimensional feature space
e Smooth decision boundaries

e Local influence: Similar points have high kernel values
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RBF (Gaussian) Kernel

Most Popular Kernel:

]2
k(x,x')zexp(—Hx XH)

202
Hyperparametero:

e Small o: Curvy, complex boundaries (high variance)
e Large o: Smooth, simple boundaries (high bias)

Euclidean Distance:
D

x —x'[* =) (z;—2))

j=1
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SVM Decision Function

Final Prediction:

f(x) = sign (Z a;y;k(xq,x) + b)

Support Vectors:

e Training points with a; > 0
e Only these points affect the decision boundary

e Typically small subset of training data

Sparsity: Most ar; = 0, leading to efficient predictions
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SVM Hyperparameter Summary

C (Regularization Parameter):

e Controls margin vs accuracy trade-off

e Higher C - More complex model, Lower C = Simpler model
Kernel Choice:

e Linear: For linearly separable data
e Polynomial: For moderate non-linearity

e RBF: For complex non-linear patterns
RBF Parameter o

e Controls smoothness of decision boundary

e Cross-validation typically used for selection
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SVM: Strengths and Limitations

Strengths:

o Effective in high-dimensional spaces
e Memory efficient (uses only support vectors)
o Versatile (different kernels for different data)

e Works well with small datasets
Limitations:

e No probability estimates (only classifications), Sensitive to feature scaling
e Slow on large datasets (quadratic in training size)

e Choice of kernel and parameters can be tricky

Best Use Cases: Medium-sized datasets with complex decision boundaries
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SVM Implementation

Check the implementation on Notebook
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