Fundamental Algorithms

Chapter 3: Five Essential Supervised Learning Algorithms

The Five

- 1. Linear Regression
- 2. Logistic Regression
- 3. Decision Tree Learning
- 4. Support Vector Machine
- 5. k-Nearest Neighbors

1. Linear Regression

Purpose: Learn a linear combination of features for real-valued predictions

Model:

$$f_{\mathbf{w},b}(x) = \mathbf{w^T}\mathbf{x} + b$$

Goal: Find optimal \mathbf{w}^* and b^* for most accurate predictions

Use Case: Regression tasks (predicting continuous values)

Linear Regression: Problem Setup

Given: Dataset $\{x_i,y_i\}_{i=1}^N$

- x_i : D-dimensional feature vector
- y_i : real-valued target

Predict: $y = f_{\mathbf{w},b}(x_{new})$

Key Features:

- Predicts real values, not classes
- Minimizes prediction error
- Simple yet effective

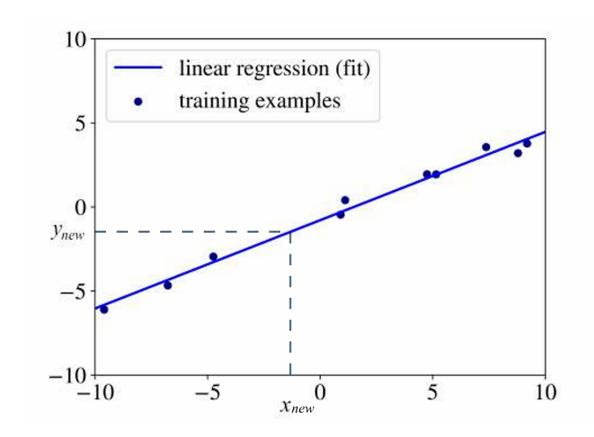


Figure 1: Linear Regression for one-dimensional examples.

Linear Regression: Visualization

Regression Models:

• 1D: A line

• 2D: A plane

• D-dimensions: A hyperplane

Linear Regression: Cost Function

Objective Function (Cost): (Average Loss or Empirical Risk)

$$C(\mathbf{w},b) = rac{1}{N} \sum_{i=1}^N (f_{\mathbf{w},b}(x_i) - y_i)^2$$

Loss Function: $(f_{\mathbf{w},b}(x_i) - y_i)^2$ (squared error loss)

Why Squared Loss?

- Penalizes large errors more
- Smooth, continuous derivatives
- Easier optimization

Linear Regression: Optimization

Analytical Solution:

$$\frac{\partial C}{\partial \mathbf{w}} = 0, \quad \frac{\partial C}{\partial b} = 0$$

Gradient Descent Algorithm:

- 1. Initialize ${f w}$ and b randomly
- 2. Compute gradients: $abla_{\mathbf{w}}C = rac{1}{N}\sum_{i=1}^{N}2(f_{\mathbf{w},b}(x_i)-y_i)x_i$
- 3. Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \nabla_{\mathbf{w}} C$
- 4. Repeat until convergence

Linear Regression: Advantages

Advantages:

- Simple and interpretable
- Rarely overfits (low variance)
- Fast to compute
- Closed-form solution available

Linear Regression: Inductive Bias

What does Linear Regression assume?

Core Assumption: The relationship between features and target is linear

$$y = w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_D x^{(D)} + b$$

Inductive Bias Examples:

- Good for: House prices (size, location, bedrooms → price)
- Bad for: XOR problem (non-linear relationships)
- Bad for: Image recognition (pixel intensities aren't linearly related to objects)

Linear Regression: Inductive Bias

When Linear Bias Fails:

```
# XOR problem - linear model fails
X = [[0,0], [0,1], [1,0], [1,1]]
y = [0, 1, 1, 0] # XOR truth table

# Linear regression will find poor fit
# because no line can separate XOR classes
```

Linear Regression: Implementation

Look at the associated Notebook.