
Limits of Learning, Mathematical Notations & Python
Foundations

Chapter 2: Essential Concepts for ML
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Scalars

• A scalar is a simple numerical value, like 15 or −3.25

• Variables or constants that take scalar values are denoted by an italic letter, like x or a
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Vectors

• A vector is an ordered list of scalar values, called attributes

• Denoted as a bold character, for example, x or w

• Can be visualized as:
◦ Arrows that point to some directions

◦ Points in a multi-dimensional space
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Vectors

Example vectors:

• a = [2, 3]

• b = [−2, 5]

• c = [1, 0]
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Vector Attributes

• Attribute of a vector denoted as italic value with index:  or 

• Index j denotes specific dimension of the vector

• Example: In vector a = [2, 3]:
◦ 

◦ 

Important:  (power operator)

• For power of indexed attribute: 
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Multiple Indices

Variables can have two or more indices:

• 

• 

Example: In neural networks,  denotes:

• Input feature j of unit u in layer l
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Sets

• An unordered collection of unique elements

• Denoted as calligraphic capital character, e.g., S

Finite sets:

• {1, 3, 18, 23, 235}

• {x₁, x₂, x₃, x₄, ..., xₙ}

Infinite sets:

• [a, b] - includes endpoints a and b

• (a, b) - excludes endpoints a and b

• ℝ - all real numbers from −∞ to +∞
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Set Operations

Membership: x ∈ S (x belongs to set S)

Intersection: S₃ ≡ S₁ ∩ S₂

• Example: {1, 3, 5, 8} ∩ {1, 8, 4} = {1, 8}

Union: S₃ ≡ S₁ ∪ S₂

• Example: {1, 3, 5, 8} ∪ {1, 8, 4} = {1, 3, 4, 5, 8}
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Capital Sigma Notation

Summation over collection X = {x₁, x₂, ..., x_{n−1}, xₙ}:

Summation over vector attributes x = [ ]:

Note:  means "is defined as"
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Capital Pi Notation

Product of elements in collection or vector attributes:

Where:

• a · b means a multiplied by b

• We often omit · for simplicity: ab = a multiplied by b
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Operations on Sets

Derived set creation:
S′ ≡ {x² | x ∈ S, x > 3}

Meaning: Create new set S′ containing x² for all x in S where x > 3

Cardinality operator:
|S| returns the number of elements in set S
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Operations on Vectors

Vector Addition:
x + z = [ ]

Vector Subtraction:
x − z = [ ]

Scalar Multiplication:

xc  [ ]
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Dot Product

Dot product of two vectors (scalar result):

wx

Alternative notation: w · x

Requirements:

• Both vectors must have same dimensionality

• Otherwise dot-product is undefined

13



Matrix-Vector Multiplication

Matrix W and Vector x:

Vector on right (column vector):

Requirement: Vector dimensions = matrix columns
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Vector Transpose

Transpose operation:

Vector on left (transposed):

Requirement: Vector dimensions = matrix rows
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Functions

Definition:

• Relation associating each element x of set X (domain) to single element y of set Y
(codomain)

• Notation: y = f(x)

• x = argument/input, y = value/output

Vector Function:
y = f(x) - function returning vector, can have vector or scalar argument
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Functions

Local Minimum:
f(x) has local minimum at x = c if f(x) ≥ f(c) for every x in some open interval around x = c

Global Minimum:
Minimal value among all local minima
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Max and ArgMax Operators

Max Operator

Given a set of values A = {a₁, a₂, ..., aₙ}, the operator:

returns the highest value f(a) for all elements in the set A.

ArgMax Operator

returns the element of the set A that maximizes f(a).
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Simplified Notation

When the set is implicit or infinite, we can write:

•  or 

Min Operators

Operators min and arg min operate in a similar manner:

•  returns the lowest value

•  returns the element that minimizes f(a)

Key Distinction

• max/min: Returns the value

• argmax/argmin: Returns the argument (element) that produces that value 19



Assignment Operator

Variable assignment:
a ← f(x)
Variable a gets new value: result of f(x)

Vector assignment:
a ← [a₁, a₂]
Two-dimensional vector a gets value [a₁, a₂]
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Derivatives and Gradients

What is a Derivative?

A derivative f' of function f describes how fast f grows or decreases

• Constant derivative (e.g., 5 or -3): function grows/decreases at constant rate

• Function derivative f'(x): growth rate varies across domain

• f'(x) > 0: function grows at point x

• f'(x) < 0: function decreases at point x

• f'(x) = 0: horizontal slope at point x
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Basic Derivatives & Chain Rule

Known derivatives:

• f(x) = x² → f'(x) = 2x

• f(x) = 2x → f'(x) = 2

• f(x) = 2 → f'(x) = 0 (any constant → 0)

Chain Rule: For F(x) = f(g(x))

Example: F(x) = (5x + 1)²

• g(x) = 5x + 1, f(g(x)) = (g(x))²

• F'(x) = 2(5x + 1) · 5 = 50x + 10
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Gradients: Multi-Variable Extension

Gradient = generalization of derivative for functions with multiple inputs

Partial Derivatives: Focus on one input, treat others as constants

Example: f([x⁽¹⁾, x⁽²⁾]) = ax⁽¹⁾ + bx⁽²⁾ + c

Gradient: ∇f = [∂f/∂x⁽¹⁾, ∂f/∂x⁽²⁾] = [a, b]
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Random Variables

Definition: A random variable, usually written as an italic capital letter like X, is a variable
whose possible values are numerical outcomes of a random phenomenon.

Two Types:

1. Discrete Random Variables

2. Continuous Random Variables
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Discrete Random Variables

Takes only a countable number of distinct values

• Examples: red, yellow, blue or 1, 2, 3, ...

Probability Mass Function (PMF):

• List of probabilities associated with each possible value

• Example: Pr(X = red) = 0.3, Pr(X = yellow) = 0.45, Pr(X = blue) = 0.25

Properties:

• Each probability ≥ 0

• Sum of all probabilities = 1

• Visualized as discrete bars (see figure 3a)
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Continuous Random Variables

Takes an infinite number of possible values in some interval

• Examples: height, weight, time

Key Insight: Since values are infinite, Pr(X = c) = 0 for any specific value c

Probability Density Function (PDF):

• Describes probability distribution

• Codomain is non-negative

• Area under the curve = 1 (see figure 3b)

Note: Instead of exact probabilities, we use intervals: Pr(a ≤ X ≤ b)
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Expectation for Discrete Variables

For discrete random variable X with k possible values {x₁, x₂, ..., xₖ}:

Expanded form:

Alternative names:

• Mean

• Average

• Expected value

• Often denoted as µ 27



Probability Mass Function (PMF) and Probability Density Function (PDF)
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Standard Deviation for Discrete Variables

Standard deviation (usually denoted as σ):

Expanded form:

where µ = E[X]
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Expectation for Continuous Variables

For continuous random variable X:

where:

•  is the PDF of variable X

•  is the integral over all real numbers

Key Concept: Integral is the continuous equivalent of summation

• Equals the area under the curve of function 

• PDF property: 
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From Theory to Practice

In Real Machine Learning:

• We don't know the true distribution 

• We can only observe some values of X

• These observed values are called examples

• Collection of examples = sample or dataset

The Challenge:

• Estimate properties of unknown distribution

• Make predictions based on limited samples

• Generalize from training data to new, unseen data
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Bayes' Rule

Fundamental theorem for updating probabilities:

“The probability that  equals  given that  equals  is equal to the probability that
 equals  given that  equals , multiplied by the probability that  equals , and

divided by the probability that  equals .”

Or

“The posterior probability of  given  is the likelihood of  given
, times the prior probability of , all normalized by the marginal probability

of .”
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Parametric Models and Bayes' Rule

When we have a model with parameters θ:

Bayes' Rule becomes powerful for parameter estimation when we have:

• A model  with parameter vector θ

• Data samples to estimate θ

Example: Gaussian Distribution Model

where 
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Parameter Update with Bayes' Rule

Updating parameters from data:

Simplified (dropping normalization):

where 
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Iterative Parameter Estimation

For sample S with finite possible θ values:

1. Initialize prior: Guess  such that 

2. For each example :

◦ Compute  for all possible 

◦ Update prior: 

3. Repeat until convergence

Key Insight: Each new data point updates our belief about parameters
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Maximum Likelihood Estimation

Best parameter values given data:

In practice, optimize log-likelihood:
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Continuous Parameter Spaces

When θ has infinite possible values:

• Cannot enumerate all possibilities

• Need numerical optimization (e.g., gradient descent)

• Optimize log-likelihood directly:

Find:

Methods: Gradient descent, Newton's method, etc.
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Machine Learning Fundamentals
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The Core Assumption

Learning problems are characterized by some unknown probability distribution  over
input/output pairs .

Key Question: What if someone told you what  was?

Suppose you had access to a Python function computeD(x, y)  that returns the
probability of that  pair under .

Result: Classification becomes simple!
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The Bayes Optimal Classifier

If we knew , we could define the Bayes optimal classifier as:

In plain English:

• For any test input 

• Simply return the  that maximizes computeD

• Choose the label with highest probability under the distribution
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Why is it "Optimal"?

Theorem 1 (Bayes Optimal Classifier)

The Bayes Optimal Classifier  achieves minimal zero/one error of any deterministic
classifier.

Important Notes:

• This theorem compares against deterministic classifiers

• A stronger result exists for randomized classifiers too (proof is messier)

• Intuition: For any given ,  chooses the label with highest probability, minimizing
error probability
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Proof Sketch

• Consider some other classifier  that claims to be better than 

• Then there must be some  where 

• Fix such an  for analysis

• Probability that  makes an error on this : 

• Probability that  makes an error on this : 

• Since , we have:
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Proof Sketch

• This means the probability that  errs on this particular  is smaller than the
probability that  errs on it.

Generalization: This applies to any  for which 

Therefore:  achieves smaller zero/one error than any  ∎
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The Take-Home Message

If someone gave you access to the data distribution, forming an optimal classifier
would be trivial.

The Reality:

• No one gives you this distribution

• We only have access to a training set sampled from 

• We need to learn the mapping from  to  without knowing  directly

The Challenge: How do we approximate  using only sample data?
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Inductive Bias

The Necessity of Assumptions in Learning
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The Learning Problem

Given: Limited examples from an infinite world
Challenge: How do we generalize to unseen cases?

Without Assumptions

• Any pattern could explain the data

• Infinite hypotheses are equally valid

• No basis for choosing one over another
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The Learning Problem

With Inductive Bias

• Constrains what we consider "reasonable"

• Enables meaningful generalization

• Makes learning from finite data possible

Bottom line: Learning is impossible without some form of bias

Inductive Bias: What We Know Before the Data Arrives
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The Spectrum of Bias

High Bias Example

Person strongly prefers blue color

• Chooses blue umbrella from poor company over black umbrella from excellent
company

• Fast decision based on color preference

• Risk: Ignores quality due to color bias
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The Spectrum of Bias

Low Bias Example

Person considers all factors equally

• Evaluates company reputation, price, durability, design, color

• Needs more information and time to decide

• Risk: Analysis paralysis, may miss good deals

The art: Matching your bias to what actually matters
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Why This Matters

For Understanding:

• Every learning system embeds assumptions

• Performance depends on assumption quality

• There is no "assumption-free" learning

For Practice:

• Choose systems whose bias matches your domain

• Understand what your system assumes about the world

• Debug failures by examining bias mismatches

Remember: The question isn't whether to have bias, but what bias to have
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Not Everything is Learnable

Why Machine Learning Sometimes Fails

Machine learning works well in many cases, but it's not magical.
There are fundamental reasons why learning algorithms can fail.
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Four Sources of Learning Failure

1. Noise in Training Data

Feature-level noise: Sensor failures, measurement errors, typos

• Robot's laser range finder returns incorrect distance

• Typos in text reviews

Label-level noise: Incorrect classifications

• Student writes negative review but clicks positive rating

• Human annotation errors
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Four Sources of Learning Failure

2. Insufficient Features

The available information is simply not enough to make accurate predictions

Medical diagnosis example:

• Have gene expressions, X-rays, family history

• Still impossible to definitively diagnose cancer

• Some problems are inherently uncertain

Contrived example:

• Trying to classify reviews as positive/negative

• Only have first 5 characters of each review

• Missing crucial information
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Four Sources of Learning Failure

3. No Single Correct Answer

Different people legitimately disagree on the "right" answer

"Safe web search" example:

• Ask humans to label web pages as "offensive" or not

• What's offensive to one person is reasonable to another

• Subjective problems have inherent ambiguity

Often treated as label noise, but it's a distinct challenge
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Four Sources of Learning Failure

4. Misaligned Inductive Bias

 TEST 
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Four Sources of Learning Failure

4. Misaligned Inductive Bias

The learning algorithm's assumptions don't match the target concept

Bird/non-bird classification example:

• Humans might guess: bird vs. non-bird, or flying vs. non-flying

• Actual pattern: "background is in focus" vs. "background is blurry"

• This distinction is so unusual that most learners would miss it

Key insight: Neptunians who evolved to care about focus might learn this easily!
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The Crucial Difference

Algorithm-Specific vs. Fundamental Problems

Inductive Bias Mismatch (Source #4):

• Problem with the particular learning algorithm

• Switching algorithms might solve the problem

• Algorithm's assumptions don't fit the data pattern

Other Sources (1-3):

• Fundamental properties of the learning problem

• No algorithm can overcome these limitations

• The problem itself is inherently difficult

Takeaway: Sometimes the algorithm is wrong for the data, sometimes the data is just hard 57



Thank you

Next

• Python, Numpy, Conda

• Fundamental Algorithms
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