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Historical ages
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Materials and civilization

What next ???

Iron Age

Stone Age Bronze Age

Silicon Age 
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Shifting paradigms of science 
& the ‘seasons’ of AI research

• Dartmouth conference (1956)

• John McCarthy, ‘father of AI’.


• Natural Language Processing (NLP)

(‘Student’, Bobrow 1964); ELIZA 

(Weizenbaum 1966); machine

translation.

• Media hype, slow progress.

• Lighthill report (1973, British Science Res.

Council): ‘In no part of the field have

discoveries made so far produced

The major impact that was then promised’.

AI History: The First Summer and Winter of AI

S. Raja, techgenesis.com



Approach 0:  
Trial-and-error experimentation

Slow pace, uncertain, expensive, often 
serendipitous 

Li-ion battery tested in 1970s 
Widely used only in 1990s 

Still some way before widely used for mobility 

Giant magnetoresistance materials (1988) 
Data-storage storage (1997) 

Traditional approach to materials design
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Hybrid Tandems (2-terminal)
Perovskite/Si
Perovskite/organic
Perovskite/CIGS
III-V/Si

Emerging PV
Dye-sensitized cells
Perovskite cells
Organic cells
Organic tandem cells
CZTSSe cells
Quantum dot cells
Perovskite tandem cells

Thin-Film Technologies

CIGS
CdTe
Amorphous Si:H (stabilized)

CIGS (concentrator)

Thin-film crystal

Crystalline Si Cells
Single crystal (concentrator)

Multicrystalline
Silicon heterostructures (HIT)

Single crystal (non-concentrator)

Single-Junction GaAs
Single crystal
Concentrator
Thin-film crystal

III-V Multijunction Cells 
(2-terminal, monolithic)
LM = lattice matched
MM = metamorphic
IMM = inverted, metamorphic

Two-, three-, and four-junction (concentrator)
Three-junction or more (non-concentrator)
Two-junction (non-concentrator)



• Space of all materials structure and composition

• Inorganic Crystal Structure Database (ICSD): 307,301 crystal structures as on 01/10/2024

• Crystallography Open Database (COD): 526,936 entries as on 06/08/2025

• At least 108,423 experimentally verified, unique 2D materials with up to 6 different elements as in 2018 (Mount et al. 

Nat. Nanotech. 2018)


• Number of possible inorganic materials .

• A vast materials space to be explored 

• High throughput experiments 

• Faster, but still expensive


• Can explore only a limited number of materials


• Could autonomous experiments be the answer?


• Quantum mechanical calculations (density functional theory) replacing experiments


• Still (computationally) expensive, slow & labor intensive


• High throughput computations, faster but computationally equally expensive


• This is where data-driven approach becomes crucial

> 1010

Materials space

How to do this efficiently?
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High throughput experimentation

Ma et a., Chinese J Chem. Engg. (2025)

High-throughput & autonomous experiments



Materials Genome Initiative
www.mgi.gov

• Multi-agency US government initiative


• To reduce the time to develop and deploy advanced materials


• Materials development & deployment typically one to two decades


• MGI aimed to reduce it to half, at a much reduced cost


• Bottleneck: Seven-stage development continuum (figure), little feedback between 
stages


• Need for better integration of and feedback between stages


• Encouraged open innovation ecosystem for accelerated materials discovery through 


• Large accessible databases


• Advancing computational tools, including AI-driven methods

Source: MGI

http://www.mgi.gov


More rational approaches
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Materials of interest 
Experiments

Existing materials or 

knowledge-guided construction

Approach 1:  
DFT-assisted screening

Approach 2:  
ML-assisted screening



Approach 2: 

Inverse design of materials

Materials Properties

Theory driven paradigm

Data driven paradigm
M1

M2

P2

P1
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Inverting the question

P = f(M)

Inverse design paradigm

??

Properties Materials

P

M

M = g(P)



Materials property prediction (& screening)

Examples

• Is a material stable? — thermodynamic, dynamical and 

mechanical stability.

• Calculate formation energy, distance from hull, phonon spectrum, 

usually DFT.


• Band gap of a semiconductor — DFT underestimates band gaps, 
more advanced calculations more expensive.


• Ferromagnet or anti-ferromagnet? What is the saturation 
magnetization? Coercivity? 



Training models to predict properties
Using existing data

• Materials genome initiative 
• https://www.mgi.gov


• Materials Project 
• https://materialsproject.org


• NOMAD

• https://nomad-coe.eu


• Open quantum materials database 
• http://oqmd.org 


• AFLOW 
• http://www.aflow.org


• Computational materials repository 

• https://cmr.fysik.dtu.dk 


• novomag 
• https://

www.novomag.physics.iastate.edu/
structure-database


• Novamag 
• https://zenodo.org/records/3241267


• Alexandria 
• https://figshare.com/articles/

dataset/Alexandria_DB/27174897?
file=49622718


• JARVIS-DFT

• https://jarvis.nist.gov/

https://www.mgi.gov
https://materialsproject.org
https://nomad-coe.eu
http://oqmd.org
http://www.aflow.org
https://cmr.fysik.dtu.dk
https://www.novomag.physics.iastate.edu/structure-database
https://www.novomag.physics.iastate.edu/structure-database
https://www.novomag.physics.iastate.edu/structure-database
https://zenodo.org/records/3241267
https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718
https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718
https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718


Machine Learning

In one slide

• Regression 


• ;    called the predictors, descriptors, features


•  is error independent of , 


• Estimate  (say  ) from observed points, predict  for a new 


• Linear regression: Predicted  . 


• ’s obtained minimizing    


• Ridge regression: Minimize 


•

Y = f (X ) + ϵ X = (X1, X2, …, Xp)

ϵ X ϵ̄ = 0
f ̂f ̂Y = ̂f (X ) X

̂Yi = β0 +
p

∑
j=1

βjXj

βj RSS =
N

∑
i=1

(Yi − β0 −
p

∑
j=1

βjXi
j)2

N

∑
i=1

(Yi − β0 −
p

∑
i=1

βjXi
j)2 + λ

p

∑
j=1

β2
j
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parameters



hyper-parameter

λ > 0

Machine Learning

Supervised Learning Unsupervised Learning

Regression

Classification
When  takes two or more discrete values

Classification 
• Stable or unstable?

• Magnetic or NM?

• FM or AFM?



Details we will learn

• How to access/download from (free) databases

• Materials representation for machine learning


• Properties that materials features should ideally satisfy

• What features to use, and how to create them


• Training models, measuring their performance


• Few examples where ML is used to accelerate materials 
characterization



Topics we won’t learn
• Generative models (used for inverse design), most elegant way of exploring the vast 

materials space

• Generative adversarial network (GAN)

• Variational auto-encoder (VAE)

• Diffusion-based models 


• Machine learning force fields (MLFF) 
• Molecular dynamics is a powerful simulation technique in physics, chemistry (i.e., 

materials) and biology

• Parametrized potentials


• Example: Lennard-Jones . Such potentials for C, Si, 

metals, e.g. Fe, Co. Fitted to DFT or experiments. Inexpensive calculations, but 
constrained to represent specific environments. 


• Ab initio or DFT-generated potentials. Accurate but expensive.

• ML models trained on DFT results to predict energies and forces for a collection of 

atoms; universal force fields. DFT-level accurate calculations at the cost of classical MD.

eij = − ϵ[( σ
rij

)6 − ( σ
rij

)12]



•Future of materials science, particularly materials design—

•Efficient exploration of materials space via


•Generative models

•Accurate property predictions via surrogate models, materials screening

•Efficient materials simulations using MLFFs

•High-throughput and autonomous materials synthesis, characterization and property 

measurements


•Benefits —

•Accelerated materials development and deployment in technologies

•High fidelity; precise, large-scale synthesis of materials, enhanced reproducibility, safety, cost-

effectiveness

•Tasks taking months can be completed in days (Burger et al. Nature (2020))


• Integrated materials design, synthesis and characterization platforms that are

•Connected, Autonomous, Shared and High-throughput (CASH) (Shimizu et al. APL Mater. (2020))

•A dream for the future: A single command, or even a voice command 


•Explores materials space & generates new materials

•Checks for stability & and desired properties

• If promising, hands over to the autonomous experimental agent who

•Synthesizes, characterizes, and measures properties

•Different components may be distributed geographically
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Possibilities for the future


