Machine Learning for
Materials Science

An Introduction

Profs. Prasenjit Sen (HRI) & Subhankar Mishra (NISER)



Materials and civilization
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What next ???




Shifting paradigms of science
& the ‘seasons’ of Al research

Al History: The First Summer and Winter of Al
O. Raja, techgenesis.com Explosive growth
“4" industrial revolution’

- investment & research = flexpectations, results)

Data-Driven
Science

1980's
1970's PR R Al for Science
Inflated Hype Data 03
1956 explosion Concerns
Dartmouth led to about Al .
Conference improved implications; ¢th Paradigm
1Y/4-1980 19971993 features regulatory .
/ Al Winter | Al Winter Il learning trends .
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3rd Paradigm .

» Dartmouth conference (1956)
- John McCarthy, ‘father of Al’. 2nd Paradigm Computational

Science

- Natural Language Processing (NLP) 1st Paradigm

(‘Student’, Bobrow 1964); ELIZA

(Weizenbaum 1966); machine Empiricul

Science

translation.

« Media hype, slow progress.
- Lighthill report (1973, British Science Res.
Council): ‘In no part of the field have
discoveries made so far produced

The major impact that was then promised’.




Traditional approach to materials design

Approach O:
Trial-and-error experimentation

Slow pace, uncertain, expensive, often
serendipitous
Li-ion battery tested in 1970s
Widely used only in 1990s
Still some way before widely used for mobility

Giant magnetoresistance materials (1988)
Data-storage storage (1997)
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Materials space

- Space of all materials structure and composition
- Inorganic Crystal Structure Database (ICSD): 307,301 crystal structures as on 01/10/2024
- Crystallography Open Database (COD): 526,936 entries as on 06/08/2025

- At least 108,423 experimentally verified, unique 2D materials with up to 6 different elements as in 2018 (Mount et al.
Nat. Nanotech. 2018)

- Number of possible inorganic materials > 1019,

- A vast materials space to be explored

How to do this efficiently?

e High throughput experiments
* Faster, but still expensive
e Can explore only a limited number of materials

* Could autonomous experiments be the answer?
* Quantum mechanical calculations (density functional theory) replacing experiments
o Still (computationally) expensive, slow & labor intensive

* High throughput computations, faster but computationally equally expensive

* This is where data-driven approach becomes crucial



High-throughput & autonomous experiments

Ma et a., Chinese J Chem. Engg. (2025)
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Materials Genome Initiative

WwWWwW.mdgi.gov

- Multi-agency US government initiative
* To reduce the time to develop and deploy advanced materials

- Materials development & deployment typically one to two decades

« MGI aimed to reduce it to half, at a much reduced cost

- Bottleneck: Seven-stage development continuum (figure), little feedback between
stages

- Need for better integration of and feedback between stages

« Encouraged open innovation ecosystem for accelerated materials discovery through

* Large accessible databases

- Advancing computational tools, including Al-driven methods

> Deployment*
7

* Includes Sustainment and Recovery

Source: MGl


http://www.mgi.gov

More rational approaches

Existing materials or
knowledge-guided construction

Approach 1:
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Approach 2:
Inverse design of materials

Inverting the question

Theory driven paradigm

_ e i i k’/ 5

Materials\: Data driven paradigm Properties
P = f(M)
Inverse design paradigm
P
22
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Properties :

P Materials

M = g(P)




Materials property prediction (& screening)

Examples
* Is a material stable”? — thermodynamic, dynamical and
mechanical stabllity.
- Calculate formation energy, distance from hull, phonon spectrum,
usually DFT.

- Band gap of a semiconductor — DFT underestimates band gaps,
more advanced calculations more expensive.

» Ferromagnet or anti-ferromagnet? What is the saturation
magnetization? Coercivity?



Training models to predict properties
Using existing data

e Materials genome initiative e https://cmr.fysik.dtu.dk

e https://www.mqi.gov

e novomag

e Materials Project * https://
www.novomag.physics.iastate.edu/
structure-database

e https://materialsproject.org

NOMAD

* Novamag
e https://nomad-coe.eu

* https://zenodo.org/records/3241267

e Open quantum materials database _
e Alexandria
* http://ogmd.org

e https://figshare.com/articles/
dataset/Alexandria DB/271748977
AFLOW file=49622718

* http:// www.aflow.org

e JARVIS-DFT
e Computational materials repository e https://jarvis.nist.gov/
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https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718
https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718
https://figshare.com/articles/dataset/Alexandria_DB/27174897?file=49622718

Machine Learning
In one slide

Machine Learning
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Supervised Learning
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Unsupervised Learning

J' Classification

Regression

When takes two or more discrete va

ues

e Regression

Y=f(X)+¢ X=(X,X,,...,X)) called the predictors, descriptors, features

¢ is error independent of X, € = 0

Estimatef(sayf) from observed points, predict Y = f(X) for a new X

p
Linear regression: Predicted Y' = f3, + Z,BJX] .

Jj=1

N
p;’s obtained minimizing RSS = Z — By — Z'BXZ

i=1

Ridge regression: Minimize Z — By — ZﬂJ

=1

J=1 hyper

Classification
- Stable or unstable?
« Magnetic or NM?
« FM or AFM?

\> patameters

A > 0

-parameter




Details we will learn

- How to access/download from (free) databases

- Materials representation for machine learning
 Properties that materials features should ideally satisfy
- What features to use, and how to create them

» Training models, measuring their performance

* Few examples where ML is used to accelerate materials
characterization



Topics we won’t learn

- Generative models (used for inverse design), most elegant way of exploring the vast
materials space

« Generative adversarial network (GAN)
- Variational auto-encoder (VAE)

 Diffusion-based models

- Machine learning force fields (MLFF)
« Molecular dynamics is a powerful simulation technique in physics, chemistry (i.e.,
materials) and biology

- Parametrized potentials

O .\6 o\ 12 . .
. Example: Lennard-Jones €; = — 6[(—) — (—) ] Such potentials for C, Si,
T T
metals, e.g. Fe, Co. Fitted to DFT or experiments. Inexpensive calculations, but

constrained to represent specific environments.
 Ab initio or DFT-generated potentials. Accurate but expensive.

« ML models trained on DFT results to predict energies and forces for a collection of
atoms; universal force fields. DFT-level accurate calculations at the cost of classical MD.



Possibilities for the future

e Future of materials science, particularly materials design—
o Efficient exploration of materials space via
e Generative models
e Accurate property predictions via surrogate models, materials screening
e Efficient materials simulations using MLFFs

e High-throughput and autonomous materials synthesis, characterization and property
measurements

e Benefits —
e Accelerated materials development and deployment in technologies

e High fidelity; precise, large-scale synthesis of materials, enhanced reproducibility, safety, cost-
effectiveness

e Tasks taking months can be completed in days (Burger et al. Nature (2020))

e Integrated materials design, synthesis and characterization platforms that are
e Connected, Autonomous, Shared and High-throughput (CASH) (Shimizu et al. APL Mater. (2020))
e A dream for the future: A single command, or even a voice command
e Explores materials space & generates new materials
* Checks for stability & and desired properties
e |f promising, hands over to the autonomous experimental agent who
e Synthesizes, characterizes, and measures properties
e Different components may be distributed geographically
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