Machine Learning for Materials Science

An Introduction

Profs. Prasenjit Sen (HRI) & Subhankar Mishra (NISER)

Materials and civilization

Stone Age

Silicon Age

What next ???

Bronze Age

Iron Age

Shifting paradigms of science

& the 'seasons' of AI research

- John McCarthy, 'father of Al'.
- Natural Language Processing (NLP)
 ('Student', Bobrow 1964); ELIZA
 (Weizenbaum 1966); machine
 translation.
- Media hype, slow progress.
- Lighthill report (1973, British Science Res.

Council): 'In no part of the field have discoveries made so far produced

The major impact that was then promised'.

Traditional approach to materials design

Approach 0: Trial-and-error experimentation

Slow pace, uncertain, expensive, often serendipitous

Li-ion battery tested in 1970s
Widely used only in 1990s
Still some way before widely used for mobility

Giant magnetoresistance materials (1988)

Data-storage storage (1997)

Materials space

- · Space of all materials structure and composition
 - · Inorganic Crystal Structure Database (ICSD): 307,301 crystal structures as on 01/10/2024
 - Crystallography Open Database (COD): 526,936 entries as on 06/08/2025
 - · At least 108,423 experimentally verified, unique 2D materials with up to 6 different elements as in 2018 (Mount et al. Nat. Nanotech. 2018)
 - Number of possible inorganic materials $> 10^{10}$.
- A vast materials space to be explored

How to do this efficiently?

- High throughput experiments
 - Faster, but still expensive
 - Can explore only a limited number of materials
 - Could autonomous experiments be the answer?
- Quantum mechanical calculations (density functional theory) replacing experiments
 - Still (computationally) expensive, slow & labor intensive
 - High throughput computations, faster but computationally equally expensive
- This is where data-driven approach becomes crucial

High-throughput & autonomous experiments

Materials Genome Initiative

www.mgi.gov

- Multi-agency US government initiative
 - To reduce the time to develop and deploy advanced materials
 - Materials development & deployment typically one to two decades
 - MGI aimed to reduce it to half, at a much reduced cost
 - Bottleneck: Seven-stage development continuum (figure), little feedback between stages
 - Need for better integration of and feedback between stages
 - Encouraged open innovation ecosystem for accelerated materials discovery through
 - Large accessible databases
 - Advancing computational tools, including Al-driven methods

Source: MGI

More rational approaches

Materials of interest Experiments

Approach 2: Inverse design of materials

Inverting the question

Materials property prediction (& screening)

Examples

- Is a material stable? thermodynamic, dynamical and mechanical stability.
- Calculate formation energy, distance from hull, phonon spectrum, usually DFT.
- Band gap of a semiconductor DFT underestimates band gaps, more advanced calculations more expensive.
- Ferromagnet or anti-ferromagnet? What is the saturation magnetization? Coercivity?

Training models to predict properties

Using existing data

- Materials genome initiative
 - https://www.mgi.gov
- Materials Project
 - https://materialsproject.org
- NOMAD
 - https://nomad-coe.eu
- Open quantum materials database
 - http://oqmd.org
- AFLOW
 - http://www.aflow.org
- Computational materials repository

https://cmr.fysik.dtu.dk

novomag

- https:// www.novomag.physics.iastate.edu/ structure-database
- Novamag
 - https://zenodo.org/records/3241267
- Alexandria
 - https://figshare.com/articles/ dataset/Alexandria_DB/27174897? file=49622718
- JARVIS-DFT
 - https://jarvis.nist.gov/

Machine Learning

In one slide

Regression

- $Y = f(X) + \epsilon$; $X = (X_1, X_2, ..., X_p)$ called the predictors, descriptors, <u>features</u>
- ϵ is error independent of X, $\bar{\epsilon} = 0$
- Estimate f (say \hat{f}) from observed points, predict $\hat{Y} = \hat{f}(X)$ for a new X

Linear regression: Predicted
$$\hat{Y}^i = \beta_0 + \sum_{j=1}^p \beta_j X_j$$
.

- β_j 's obtained minimizing $RSS = \sum_{i=1}^N \left(Y^i \beta_0 \sum_{i=1}^p \beta_j X_j^i\right)^2$

Classification

- Stable or unstable?
- Magnetic or NM?
- FM or AFM?

parameters

 $\lambda > 0$

hyper-paramete

Details we will learn

- How to access/download from (free) databases
- Materials representation for machine learning
 - Properties that materials features should ideally satisfy
 - What features to use, and how to create them
- Training models, measuring their performance
- Few examples where ML is used to accelerate materials characterization

Topics we won't learn

- Generative models (used for inverse design), most elegant way of exploring the vast materials space
 - Generative adversarial network (GAN)
 - Variational auto-encoder (VAE)
 - Diffusion-based models
- Machine learning force fields (MLFF)
 - Molecular dynamics is a powerful simulation technique in physics, chemistry (i.e., materials) and biology
 - Parametrized potentials
 - . Example: Lennard-Jones $e_{ij}=-\,\epsilon \, \big[\big(\frac{\sigma}{r_{ij}}\big)^6 \big(\frac{\sigma}{r_{ij}}\big)^{12} \big].$ Such potentials for C, Si,
 - metals, e.g. Fe, Co. Fitted to DFT or experiments. Inexpensive calculations, but constrained to represent specific environments.
 - Ab initio or DFT-generated potentials. Accurate but expensive.
 - ML models trained on DFT results to predict energies and forces for a collection of atoms; universal force fields. DFT-level accurate calculations at the cost of classical MD.

Possibilities for the future

- Future of materials science, particularly materials design—
 - Efficient exploration of materials space via
 - Generative models
 - Accurate property predictions via surrogate models, materials screening
 - Efficient materials simulations using MLFFs
 - High-throughput and autonomous materials synthesis, characterization and property measurements
- Benefits
 - Accelerated materials development and deployment in technologies
 - High fidelity; precise, large-scale synthesis of materials, enhanced reproducibility, safety, costeffectiveness
 - Tasks taking months can be completed in days (Burger et al. Nature (2020))
- Integrated materials design, synthesis and characterization platforms that are
 - Connected, Autonomous, Shared and High-throughput (CASH) (Shimizu et al. APL Mater. (2020))
 - A dream for the future: A single command, or even a voice command
 - Explores materials space & generates new materials
 - Checks for stability & and desired properties
 - If promising, hands over to the autonomous experimental agent who
 - Synthesizes, characterizes, and measures properties
 - Different components may be distributed geographically