Using AI for Theorem Proving

Rahul Vishwakarma

<u>Aim</u>: To use reinforcement learning for improving the performance of theorem prover.

end

Environment:	Lean
Training Data:	Mathlib
Test Data	MiniF2F
Model:	ВуТ5

Plans:

- Read the current RL based algorithms used
- Implement the state level value function
- Experiment with new promising algorithms

```
lemma sub_ne_zero_of_ne (h: a ≠ b) : a - b ≠ 0 :=

begin

1 goal a b:ℤ h:a ≠ b + a - b ≠ 0

intro hab,

1 goal a b:ℤ h:a ≠ b hab:a - b = 0 + false

apply h,

1 goal a b:ℤ h:a ≠ b hab:a - b = 0 + a = b

apply int.eq_of_sub_eq_zero hab,

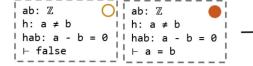
goals accomplished
```

Generative Language Modeling for Automated Theorem Proving

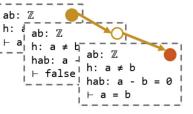
Stanislas Polu OpenAI spolu@openai.com Ilya Sutskever OpenAI ilyasu@openai.com

DT-Solver: Automated Theorem Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function

Haiming Wang^{1*}, Ye Yuan², Zhengying Liu³ Jianhao Shen², Yichun Yin³, Jing Xiong¹, Enze Xie³, Han Shi³, Yujun Li³, Lin Li³, Jian Yin^{1†}, Zhenguo Li³, Xiaodan Liang^{1,4†}


¹Sun Yat-sen University, ²Peking University, ³Huawei Noah's Ark Lab, ⁴MBZUAI {wanghm39,xiongj69}@mail2.sysu.edu.cn, {yuanye_pku,jhshen}@pku.edu.cn, {liuzhengying2,yinyichun,xie.enze,shi.han}@huawei.com {liyujun9,lilin29,Li.Zhenguo}@huawei.com

issjyin@mail.sysu.edu.cn, xdliang328@gmail.com


Root state and current state:

Previous state to current state:

Entire trajectory:

Formal Mathematics Statement Curriculum Learning

Stanislas Polu ¹ Jesse Michael Han ¹ Kunhao Zheng ² Mantas Baksys ³ Igor Babuschkin ¹ Ilya Sutskever ¹