
Class Presentation/26-10-23

Recurrent Neural Networks

Sagar Prakash Barad1

1School of Physical Sciences, National Institute of Science Education and Research

I. OUTLINE

• Motivation

• Simple RNN

• LSTM

• GRU

II. MOTIVATION

A. Modelling Sequences for getting Targets

• Convert input sequence to output se-

quence in another domain. For exp,

sound pressures to word embedding.

• Given a sequence generating the next

term in the sequence.

input sequence −→ input sequence+ next term

A Modelling Sequences for getting Targets

II. MOTIVATION

B. Suitable Models

Memoryless models for sequences

• Auto-regressive Models

• Feed Forward Neural Network

Beyond memoryless models, we have

Recurrent Neural Network

• Distributed hidden state that allows them to store a lot of information about the past efficiently[1].

• Non-linear dynamics that allows them to update their hidden state in complicated ways.

B Suitable Models

III. SIMPLE RNN

A. Architecture

Fig 1. Architecture of a simple RNN

cell[2].

Goal: Learn the mapping from the inputs

x1:T = (x1,x2,x3, ...,xT) to outputs y1:T =

(y1,y2,y3, ...,yT).

ht = ϕh (Whht−1 +Wxxt + bh) ,

yt = ϕy (Wyht + by) .

θ = {Wh,Wx,Wy, bh, by} are network pa-

rameters with ϕh and ϕy being non-linear

activation functions and ht, yt are our hid-

den state and output, respectively.

For t = 1, h0 = 0 and h1 = ϕh (Wxx1 + bh).

A Architecture

III. SIMPLE RNN

A. Architecture

Advantages

• Possibility of processing input of any length

• Model size not increasing with size of input

• Computation takes into account historical

information

• Weights are shared across time

Disadvantages

• Computation being slow

• Difficulty of accessing information

from a long time ago

• Cannot consider any future input for

the current state

A Architecture

III. SIMPLE RNN

B. Applications of RNN

Fig 2. Variation of RNNs based on task in hand[2].

B Applications of RNN

III. SIMPLE RNN

B. Applications of RNN

Fig 2. Variation of RNNs based on task in hand[2].

B Applications of RNN

III. SIMPLE RNN

C. Loss

Loss function: The loss function L is defined for loss at every time step.

L(θ) =
T∑
t=1

L (yt)}

We need to compute d
dθ
L (yt) for θ = {Wh,Wx,Wy, bh, by}.

• Derivative of L (yt) w.r.t. Wy and by :

dL (yt)

dWy

=
dL (yt)

dyt

dyt

dWy

,
dL (yt)

dby
=

dL (yt)

dyt

dyt

dby

C Loss

III. SIMPLE RNN

C. Loss

• Derivative of L (yt) w.r.t. Wx and bh :

dL (yt)

dWx

=
dL (yt)

dyt

dyt
dht

dht

dWx

,
dL (yt)

dbh
=

dL (yt)

dyt

dyt
dht

dht

dbh

Wx and bh also contributes to ht through ht−1.

dht

dWx

=
∂ht

∂Wx

+
dht

dht−1

dht−1

dWx

,
dht

dbh
=

∂ht

∂bh
+

dht

dht−1

dht−1

dbh

• Derivative of L (yt) w.r.t. Wh : by chain rule, we have

dL (yt)

dWh

=
dL (yt)

dht

dht

dWh

C Loss

III. SIMPLE RNN

C. Loss

Fig 3: Visualizing Full BPTT for ∇Wh
L (yt)[3].

C Loss

III. SIMPLE RNN

C. Loss

First, we find dht

dWh
as follows:

dht

dWh

=
∂ht

∂Wh

+
dht

dht−1

dht−1

dWh

dht

dWh

=
t∑

τ=1

(
t−1∏
l=τ

dhl+1

dhl

)
∂hτ

∂Wh

When τ = t,
∏t−1

l=t
dhl+1

dhl
= 1.

truncated BPTT

truncate

[
dht

dWh

]
=

t∑
τ=max(1,t−L)

(
t−1∏
l=τ

dhl+1

dhl

)
∂hτ

∂Wh

C Loss

III. SIMPLE RNN

D. Gradient vanishing/explosion issues

dhl+1

dhl

⊤
= ϕ′

h (Whhl +Wxxl+1 + bh)⊙Wh

∏t−1
l=τ

dhl+1

dhl
contains products of t− τ copies of Wh and the derivative ϕ′

h(·) at time steps l = τ, . . . , t− 1.

For simplification consider, ϕ′
h(·) = 1.

Then
∏t−1

l=τ
dhl+1

dhl
=
(
W t−τ

h

)⊤
will vanish or explode when t− τ is large, depending on whether Wh < 1 or not.

Since Wh is a matrix, if

max (|λmax(Wh)|, |λmin(Wh)|) < 1

then
∏t−1

l=τ
dhl+1

dhl
=
(
W t−τ

h

)⊤
will vanish or explode when t− τ increases.

D Gradient vanishing/explosion issues

III. SIMPLE RNN

D. Gradient vanishing/explosion issues

Gradient clipping

Fig 4: Visualising the gradient step with/out gradient clipping[4].

We fix a hyper-parameter γ, now a gradient g is clipped when ∥g∥ > η :

g ← γ

∥g∥
g

D Gradient vanishing/explosion issues

III. SIMPLE RNN

D. Gradient vanishing/explosion issues

IRNN Initialization

We use ReLU activation for ϕh and initialize Wh as the identity matrix (I) and bh as zero vectors (0)[5].

Therefore, ϕ′
h(t) = δ(t > 0) and dhl+1

dhl
= δ(Wxxl+1 > 0).

Orthogonal or Unitary Weight Matrix

Construct Wh as an orthogonal or unitary matrix[6].

D Gradient vanishing/explosion issues

IV. LSTM

A. Architecture

Fig 5. Architecture of a LSTM RNN

cell[2].

• Proposed by [Hochreiter and Schmid-

huber, 1997] to addressing the gradi-

ent vanishing/explosion problem.

• Introduced memory cell states and

gates.

A Architecture

IV. LSTM

B. Introducing Memory cell and Gates

f t : forget gate f t = σ (Wf · [ht−1,xt] + bf)

it : input gate it = σ (Wi · [ht−1,xt] + bi)

ot :output gate ot = σ (Wo · [ht−1,xt] + bo)

xt :input c̃t = tanh (Wc · [ht−1,xt] + bc)

ct : memory cell state ct = f t ⊙ ct−1 + it ⊙ c̃t

ht :hidden state ht = ot ⊙ tanh (ct)

The initial cell state c0 starts as zero, and both the elements in ct and ht are constrained within the range

of (-1, 1).

B Introducing Memory cell and Gates

IV. LSTM

B. Introducing Memory cell and Gates

Table I: Summary of Gates in Gated RNNs

Gate Name Function Close to 1 Close to 0

Input Gate Controls the influence of new input on cell state Accepts and stores new input Rejects new input

Forget Gate Controls the retention of past information in cell state Keeps and remembers past information Forgets past information

Output Gate Determines the influence of cell state on the output Emphasizes cell state for output Suppresses cell state for output

B Introducing Memory cell and Gates

IV. LSTM

B. Gradient Computation

dL (yt)

dWc

=
dL (yt)

dht

dht

dWc

dht

dWc

= ot ⊙
d tanh (ct)

dWc

+ tanh (ct)⊙
dot

dWc

dot

dWc

=
dot

dht−1

dht−1

dWc

dct
dWc

= f t ⊙
dct−1

dWc

+ ct−1 ⊙
df t

dWc

+ it ⊙
dc̃t
dWc

+ c̃t ⊙
dit
dWc

.

B Gradient Computation

IV. LSTM

B. Gradient Computation

dot

dWc

=
dot

dht−1

(
ot−1 ⊙

d tanh (ct−1)

dWc

+ tanh (ct−1)⊙
dot−1

dWc

)

dct
dWc

=

(
f t + ot−1 ⊙

d tanh (ct−1)

dct−1

⊙ dct
dht−1

)
︸ ︷︷ ︸

=
dct

dct−1

dct−1

dWc

+ tanh (ct−1)⊙
dct

dht−1

dot−1

dWc

+ it ⊙
∂c̃t
∂Wc

dct
dht−1

= ct−1 ⊙
df t

dht−1

+ c̃t ⊙
dit

dht−1

+ it ⊙
dc̃t

dht−1

.

B Gradient Computation

IV. LSTM

B. Gradient Computation

t−1∏
l=τ

dcl+1

dcl
=

t−1∏
l=τ

[
f l+1 + ol ⊙

d tanh (cl)

dcl
⊙ dcl+1

dhl

]
The Use of Forget Gates

• On expanding the LSTM equations, we find such as fi ⊙Qi (where i ranges from τ + 1 to t− 1).

• If the network ”forgets” the previous cell state (fi → 0), it reduces the impact of these terms, helping

prevent gradient explosion.

B Gradient Computation

IV. LSTM

B. Gradient Computation

Maintaining Cell State

• dct
dWc

has terms related to Qi and fi for the range of i (from τ + 1 to t− 1).

• When the network retains the cell state (fi → 1) for some time steps, significant terms in dWdctc emerge,

especially when oτ → 1 (where oτ is the output gate at time τ).

• This prevents gradient information at time τ from vanishing, enabling the learning of longer-term

dependencies.

B Gradient Computation

V. GRU

A. Architecture

Fig 6. Architecture of a GRU RNN cell[2].

• The Gated Recurrent Unit (GRU)

[Cho et al., 2014] enhances the sim-

ple RNN with gating mechanisms.

• In contrast to LSTM, GRU dispenses

with input/output gates and the cell

state but still preserves a form of the

forgetting mechanism.

A Architecture

V. GRU

B. Gating Mechanism

zt = σ (Wz · [ht−1,xt] + bz)

rt = σ (Wr · [ht−1,xt] + br)

h̃t = tanh (Wh · [rt ⊙ ht−1,xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt serves as the update gate, controlling the inclusion of current information into the hidden states, while rt

functions as the reset gate, influencing the retention of historical information.

B Gating Mechanism

VI. REFERENCES

[1] G. Hinton, Lecture 10: Recurrent neural networks, Tech. Rep. (University of Toronto, 2013).

[2] A. Amidi and S. Amidi, “Recurrent neural networks cheatsheet,” (2018).

[3] M. Team, “Recurrent neural network generation tutorial,” (2016).

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).

[5] Q. V. Le, N. Jaitly, and G. E. Hinton, arXiv preprint arXiv:1504.00941 (2015).

[6] A. M. Saxe, J. L. McClelland, and S. Ganguli, In International Conference on Learning Representations (2014).

https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
http://www.deeplearningbook.org

	 [frame style=left color=RoyalBlue!70!black,right color=Red!95!black,interior style=left color=RoyalBlue!35!white,right color=Red!50!white,boxrule=2pt] Recurrent Neural Networks
	Outline
	Motivation
	Modelling Sequences for getting Targets

	Motivation
	Suitable Models

	Simple RNN
	Architecture

	Simple RNN
	Architecture

	Simple RNN
	Applications of RNN

	Simple RNN
	Applications of RNN

	Simple RNN
	Loss

	Simple RNN
	Loss

	Simple RNN
	Loss

	Simple RNN
	Loss

	Simple RNN
	Gradient vanishing/explosion issues

	Simple RNN
	Gradient vanishing/explosion issues

	Simple RNN
	Gradient vanishing/explosion issues

	LSTM
	Architecture

	LSTM
	Introducing Memory cell and Gates

	LSTM
	Introducing Memory cell and Gates

	LSTM
	Gradient Computation

	LSTM
	Gradient Computation

	LSTM
	Gradient Computation

	LSTM
	Gradient Computation

	GRU
	Architecture

	GRU
	Gating Mechanism

	References
	

