Diffusion Model

Arpan Maity

CS461 National Institute of Science Education and Research Bhubaneswar

30-10-2023

CS461,National Institute of Science Education and

Ar	pa	n	Μ	ai	ty
					~

What are diffusion models?

Diffusion models are a class of probabilistic generative models used in machine learning and deep learning.

The core concept involves a methodical and gradual breakdown of the patterns within a data distribution by using a step-by-step forward diffusion process. Subsequently, a complementary reverse diffusion process is learned to reconstruct those patterns, resulting in a versatile and manageable generative model for the data.

They can be used to generate images, audio etc.

	Model ●		
The basic	: Model		

- As mentioned earlier it has two processes
 - The forward process
 - The reverse process
- ► The forward process does not include Machine learning.
- ► The reverse process is based on the Machine learning.
- The ML part learns how to remove noise for a noisy data and make it less noisy.
- The architecture can be UNet based where the data is projected with ResNet-Block and downsampling to a bottle neck(small resolution) and then again upsampling and using Res-Net block it is projected to the original size.(At some resolutions there can be attention blocks as well)

		Mathematical structure ●0000		
Notatio	nc			

- $x_t =$ The image(data) at a particular timestep t. x_0 is thus the original image.
- $q(x_t|x_{t-1})$ corresponds to the forward process.
- $p(x_{t-1}|x_t)$ corresponds to the reverse process.
- \mathcal{N} represents Normal distribution.
- $\mathcal{N}(x_t; \sqrt{1 \beta_t} x_{t-1}, \beta_t I)$ In this x_t is the output, and the rest are inputs, the second term is the mean and the third term is the variance.
- The β lie in between 0 and 1 and these are called schedules and are chnaged in every timestep.

	Mathematical structure ○●○○○		

The Forward process

$$q(x_t|X_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

A little trick

$$\alpha_t = 1 - \beta_t$$
$$\bar{\alpha_t} = \Pi_{s=1}^t a_s$$

Reparameterization technique:

$$\mathcal{N}(\mu, \sigma^2) = \mu + \sigma.\epsilon, \epsilon \sim \mathcal{N}(0, 1)$$

Rewrite the process

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

= $\sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon$
= $\sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t} \epsilon$
= $\sqrt{\alpha_t \alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \epsilon$

$$= \sqrt{\alpha_t \alpha_{t-1} \dots \alpha_1 \alpha_0} x_0 + \sqrt{1 - \alpha_t \alpha_{t-1} \dots \alpha_1 \alpha_0} \epsilon_{\text{(Sdf) National Institute of Science Education and}}$$

Arpan Maity

Research Bhubaneswar

	Mathematical structure 00●00		

The Forward process

$$= \sqrt{\bar{\alpha_t}} x_0 + \sqrt{1 - \bar{\alpha_t}} \epsilon$$
$$\boxed{\therefore q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha_t}} x_0, (1 - \bar{\alpha_t})I)}$$

CS461,National Institute of Science Education and

Ar	na	n	М	ai	tv
741	μa		141	aı	cy.

Research Bhubaneswar

		Mathematical structure ○○○●○		
The Rev	verse pr	ocess		

$$p(x_{t-1}|x_t)$$
$$p(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

We fixed the varinace and thus we will not predict that.We will start by looking at the loss function.

$$-log(p_{\theta}(x_0))$$

To find this we have keep track of t-1 variables which is not possible. So, we will calculate variational lower bound.

$$-log(p_{\theta}(x_0)) \leq -log(p_{\theta}(x_0)) + D_{KL}(q(x_{1:T}|x_0))||p_{\theta}(x_{1:T}|x_0))$$

The plus sign is there because we want to minimise the the loss. This can further be simplfied to,

$$\sum_{t=2}^{T} D_{KL}(q(x_{t-1}|x_t, x_0)||p_{\theta}(x_{t-1}||x_t)) - \log(p_{\theta}(x_0|x_1))$$

CS461,National Institute of Science Education and Research Bhubaneswar

		Mathematical structure ○○○○●		
The Rev	verse pr	ocess		

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \beta I)$$
$$q(x_{t-1}|x_t, x_0) = \mathcal{N}(x_{t-1}; \bar{\mu}_t(x_t, x_0), \bar{\beta}_t I)$$

Now we try to calculate the mean squared error between the actual $\bar{\mu_t}$ and the predicted μ_{θ}

$$L_t = \frac{1}{2\sigma_t^2} ||\bar{\mu}_t(x_t, x_0) - \mu_\theta(x_t, t)||^2$$

This can further be simplified to

$$||\epsilon - \epsilon_{\theta}(x_t, t)||^2$$

So, we optimise

$$L_{simple} = \mathbf{E}_{\mathbf{t},\mathbf{x}_0,\epsilon} \left(||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)||^2 \right)$$

CS461, National Institute of Science Education ar	6461.Na	461.	461,National	Institute	of	Science	Ed	ucation	and
---	---------	------	--------------	-----------	----	---------	----	---------	-----

	Algorithm ●O	

Training algorithm

- ▶ 1: repeat
- ▶ 2: $x_0 \sim q(x_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- ► 4: $\epsilon \sim \mathcal{N}(0, 1)$
- Take gradient descent step on $\nabla_{\theta} || \epsilon \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 \bar{\alpha_t}} \epsilon, t) ||^2$
- until converged

CS461,National Institute of Science Education and

	Algorithm O●	

Sampling algorithm

- ▶ 1: repeat
- ▶ 2: $x_T \sim \mathcal{N}(0, 1)$
- ▶ 3: for t = T, ..., 1 do
- ▶ 4: $z \sim \mathcal{N}(0,1)$ if t > 1 else z = 0

$$\blacktriangleright x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \epsilon_{\theta}(x_t, t) \right) + \sigma_t z$$

- ▶ end for
- \blacktriangleright return x_0

CS461,National Institute of Science Education and

An	nan	M/I a	11TV
	pen.		

		Recent development ●	

Recent development

- Increase the depth and decrease width
- More attention layers
- ► Increase attention heads
- Adaptive Group Normalization

			References ●0
Reference	ces		

- Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Jascha Sohl-Dickstein and Eric A. Weiss and Niru Maheswaranathan and Surya Ganguli, 2015,arXiv:1503.03585.
- Denoising Diffusion Probabilistic Models, Jonathan Ho and Ajay Jain and Pieter Abbeel, 2020, arXiv:2006.11239.
- Improved Denoising Diffusion Probabilistic Models, Alex Nichol and Prafulla Dhariwal, 2021, arXiv:2102.09672.
- Diffusion Models Beat GANs on Image Synthesis, Prafulla Dhariwal and Alex Nichol, 2021, arXiv:2105.05233.

		References O●

Thank you!

CS461,National Institute of Science Education and

An	pan	M	aity
	Dian.		urcy

Research Bhubaneswar