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Introduction

Introduction

Optimal Transport Theory(OPT) is a captivating mathematical
framework for solving transportation problems.
It finds applications across various fields, one of them being
Machine Learning.
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Introduction

Why OPT?

In several cases, we need come up with measures of distance between
pairs of probability distributions. The desirable properties being:

Symmetry
Triangle Inequality
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Introduction

Types of Measures

We do not always get to construct good measures which can qualify as
distance functions, and satisfy the above properties. Such weaker
notions of distance are called divergences. One of them being the
Kullback-Lieibler (KL) divergence.

𝒟𝐾𝐿(𝑃 | |𝑄) =
∫

𝑝(𝑥) log
(
𝑝(𝑥)
𝑞(𝑥)

)
𝑑𝑥 (1)

Where, 𝑃 and 𝑄 denote probability distributions. In original form it is
not symmetric, but it can be symmetrized [1], but there is an issue of
blowing up in certain cases.
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Introduction

Metric
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Introduction

Optimal Transport Theory
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Introduction

Optimal Transport Theory

Optimal transport theory is one way to construct an alternative metric,
to quantify the distance between pairs of probability distributions.
One such metric is the Wasserstein distance.
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Intuition and Mathematics

A thought experiment

What is the most efficient transportation plan, such that to fill the holes
with the dirt from dirt piles?
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Intuition and Mathematics

Cost

In optimization problems like these, we usually try to minimize a
function called the Cost function, or Loss function.
Transportation Cost (C)
Let’s say the cost C of moving 1 unit dirt from (𝑥0 , 𝑦0) → (𝑥1 , 𝑦1) can be
quantified by the Euclidean distance:

𝐶(𝑥0 , 𝑦0 , 𝑥1 , 𝑦1) = (𝑥0 − 𝑥1)2 + (𝑦0 − 𝑦1)2 (2)

Transportation Plan (T)
T tells us how many units of dirt to move from one point to the other.

𝑇(𝑥0 , 𝑦0 , 𝑥1 , 𝑦1) = 𝑤 (3)

This basically tells to move 𝑤 units of dirt from (𝑥0 , 𝑦0) to (𝑥1 , 𝑦1).

Aniket Nath Optimal Transport Theory October 30, 2023 10 / 24



Intuition and Mathematics

Transportation I

For a valid plan:
There must be atleast 𝑤 units of dirt at (𝑥0 , 𝑦0) and the hole at
(𝑥1 , 𝑦1) must have atleast that amount of capacity.
𝑤 is constrained to be positive. Dirt splitting is allowed.
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Intuition and Mathematics

Transportation II

Density functions:∬
𝑇(𝑥0 , 𝑦0 , 𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑝(𝑥0 , 𝑦0); ∀(𝑥0 , 𝑦0) (4)∬

𝑇(𝑥, 𝑦, 𝑥1 , 𝑦1) = 𝑞(𝑥1 , 𝑦1); ∀ (𝑥1 , 𝑦1) (5)

here, 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) are density functions, telling the dirt and
hole capacity at each coordinate.
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Intuition and Mathematics

Total Transportation Cost

Suppose we have a function 𝑇 that satisfies these conditions, then the
total cost is:

total cost =
⨌

𝐶(𝑥0 , 𝑦0 , 𝑥1 , 𝑦1)𝑇(𝑥0 , 𝑦0 , 𝑥1 , 𝑦1)𝑑𝑥0𝑑𝑦0𝑑𝑥1𝑑𝑦1 (6)

We can come up with a function 𝑇 in a discretized context. It
essentially reduces to a Linear Programming Problem.
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Intuition and Mathematics

Analogy to probability distribution

These transport plan can be interpreted as probability distributions.
Specifically if 𝑃 and 𝑄 are probability distributions over some space 𝜒,
then the transport plan can be viewed as a probability distribution over
𝜒 × 𝜒, which denotes the space of Cartesian product of 𝜒.
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Linearizing the problem

Linearizing the problem

𝑃 =

𝑛∑
𝑖=1

𝑝𝑖𝛿(𝑥𝑖) (7)

𝑄 =

𝑛∑
𝑖=1

𝑞𝑖𝛿(𝑥𝑖) (8)

Where 𝛿(𝑥𝑖) is the Dirac delta function, and 𝑥𝑖 is a point in the space
under consideration.
We have now reduced the problem to discrete transport over 𝑛 spatial
bins. We then enumerate all 𝑛𝐶2 pairs of points.
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Linearizing the problem

Discretized Cost and Transport

For the case of a discrete grid, we can alternatively define a distance
metric.

𝒞𝑖 𝑗 = | | ®𝑥𝑖 − ®𝑥 𝑗 | |2 (9)

This is essentially a symmetric choice of metric.
We also come up with a Transport plan 𝒯 , which in this case is a
matrix of dimension (𝑛 × 𝑛), 𝒯𝑖 𝑗 ∈ R𝑛×𝑛 . Then the total cost is:

total cost = ⟨𝒯 , 𝒞⟩ =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝒯𝑖 𝑗𝒞𝑖 𝑗 (10)

Where we have used the Frobenius inner product[2] between two
matrices.
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Linearizing the problem

Problem Statement

The problem now reduces to a linear programming problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝒯

⟨𝒯 , 𝒞⟩

subject to the conditions:

𝑛∑
𝑗=1

𝒯𝑖 𝑗 = 𝑎𝑖 ;∀𝑖 ∈ {1, . . . , 𝑛}

𝑛∑
𝑖=1

𝒯𝑖 𝑗 = 𝑏𝑖 ;∀𝑗 ∈ {1, . . . , 𝑛}

𝒯𝑖 𝑗 ≥ 0;∀(𝑖 , 𝑗) ∈ {1, . . . , 𝑛} × {1, . . . , 𝑛}
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Linearizing the problem
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Linearizing the problem

Solution and the desired metric

If 𝒯𝑠𝑜𝑙 happens to be the solution to this LPP problem, then the
Wasserstein distance (𝒲) is defined as:

𝒲(𝑃, 𝑄) =
√
⟨𝒯𝑠𝑜𝑙 , 𝐶⟩ (11)

We can see some properties of this distance metric.
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Linearizing the problem

Symmetry and Triangle Inequality

Suppose we set 𝑃 = 𝑄 in this Wesserstein distance, then we can see
that 𝒲(𝑃, 𝑄) = 0.
This can be understood by observing that 𝒯𝑠𝑜𝑙 = diag(𝑝) = diag(𝑞), in
such case.
It can be proved that this metric also satisfies the triangle inequality [3].
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Linearizing the problem

An example in 1D
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Linearizing the problem

A brief intro to Entropic regularization

In machine learning, we often now are using Shannon entropy[4].

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝒯

⟨𝒯 , 𝒞⟩ − 𝜖𝐻(𝒯 )

Where we have:

𝐻(𝒯 ) = −
∑
𝑖 𝑗

𝒯𝑖 𝑗 log𝒯𝑖 𝑗
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Linearizing the problem

Visualizing

𝑂(𝑑3 log 𝑑) → 𝑂(𝑑)
[5], [6]
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Linearizing the problem
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