Machine Learning Assignment

Online Dynamics Learning for Predictive Control with an Application to Aerial Robots

> Rishi Raj Sahoo 24126004

Subhankar Mishra Lab Oct 7, 2024

Outline

- Introduction
 - Abstract
 - Context
- Problem Formulation
- Online Dynamics Learning
 - KNODE
 - Online Data Collection and Learning
 - Applying learned Models in MPC
- Simulation
 - Dynamics of a Quadrotor
 - Simulation Setup and Results
- Physical Experiments
- Conclusion
- Limitations
- References

Introduction

Abstract

- Goal : Improving the accuracy of dynamic models for Model Predictive Control (MPC) in an online setting.
- In offline learning:
 - $\circ~$ Training data is collected.
 - $\circ~$ Learned via an elaborate training procedure.
 - The model does not adapt to **disturbances** or **model errors** observed during deployment.
- This adopt **knowledge-based neural ordinary differential equations (KNODE)** as the dynamic models.
 - Techniques inspired by **transfer learning** are used to improve model accuracy continually.
- Demonstrated with a **quadrotor**:
 - \circ This verify the framework through simulations and physical experiments.
 - Results show that the approach can account for **time-varying disturbances** while maintaining good **trajectory tracking performance**.

Context

- MPC:
 - Is an **optimization-based** approach using prediction models.
 - Leverages physics models or accurate data-driven models for good closed-loop performance.
- Challenge:
 - Reliance on accurate dynamic models makes it hard for the controller to adapt to system changes or environmental uncertainties.
 - If robot dynamics change or disturbances occur during deployment, the controller must update its dynamic model to maintain performance.
- Recent advancements in **deep learning** potential in modeling dynamical systems.
 - Faster optimization due to modern optimization algorithms.
- Bootstrapped Lightweight Neural network
- Model Based Reinforcement Learning(MBRL)
- Work: Instead of augmenting , it directly **Updates** the dynamic constraints by solving optimization problem.

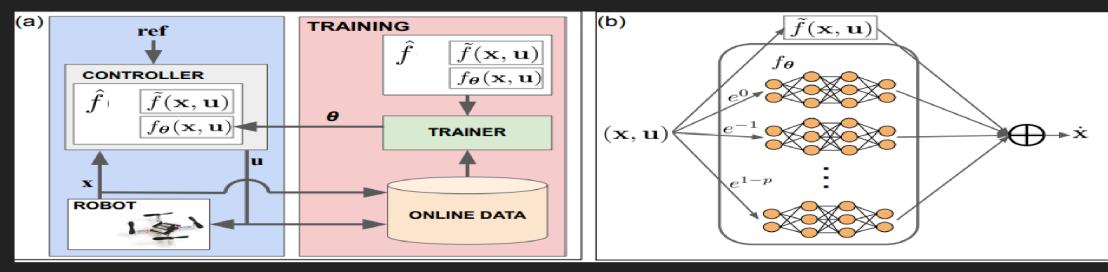
Problem Formulation

• The robot dynamics are given by:

$$\dot{x}=f(x,u)$$

• where:

- \dot{x} : State derivative (rate of change of the state).
- f: True dynamics of the robot.
- x: State of the robot.
- *u*: **Control input** to the robot.



• The sequence of collected data samples is denoted by:

$$S:=[(x(t_0),u(t_0)),(x(t_1),u(t_1)),\dots]$$

• where:

- S: Sequence of data samples consisting of states and control inputs.
- t_0, t_1, \ldots : Timestamps at which the data is collected.
- The updated dynamics model is represented by:

$$\dot{x}=\hat{f}(x,u)$$

 \circ where:

- \hat{f} : Updated estimate of the dynamics model.
- x: State of the robot.
- *u*: **Control input** to the robot.
- $f_{ heta}$: Neural Network parametrised with heta
- $ilde{f}$:Physics Knowldege

Online Dynamics Learning

KNODE

- Three aspects of KNODE:
 - It requires less data for training.(Improving adaptiveness)
 - It is a continuous-time dynamic model.(Compactability)
 - Many robotics systems have readily available physics mpdel that can be used as knowledge.
- State and control concatenated and represented as:

$$egin{aligned} z = [x^T, u^T]^T \end{aligned}$$

• The dynamics is expressed as:

$$\hat{f}(z,t) = M_\psi(ilde{f}(z,t),f_ heta(z,t))$$

where

 $\circ \,\,M_\psi$ = Selection Matrix parametrized with ψ (which couples neural network with knowledge)

• The loss function is defined as:

$$igg L(heta,\psi) = rac{1}{m-1}\sum_{i=1}^{m-1}\int_{t_i}^{t_{i+1}} \delta(t_s- au) \|\hat{x}(au) - x(au)\|^2 d au + R(heta,\psi)$$

• where:

- $\circ m$: Number of points in the training trajectory.
- \circ δ : Dirac delta function.
- $\circ \ t_s \in T$: Any sampling time in set T .
- $\circ \ R(heta,\psi)$: Regularization term on the neural network and coupling matrix parameters.
- $\circ \ \hat{x}(au)$: The estimated state at time au .
- $\circ x(au)$: The ground truth state at time au .
- $\|\hat{x}(au)-x(au)\|^2$: Squared error between the estimated and true states.

- The estimated state $\hat{x}(au)$ comes from the state $\hat{z}(au)$, which is given by:

$$\hat{x}(au) = g(\hat{z}(au))$$

where g is a function that maps \hat{z} to a desired state representation,

$$\hat{z}(au) = z(t_i) + \int_{t_i}^ au \hat{f}(z(\omega),\omega) d\omega$$

• where:

 $\circ ~ \hat{z}(au)$: The state at time au generated using the model \hat{f} .

- $\circ \ z(t_i)$: The initial condition at time t_i .
- $\circ \; \hat{f}(z(\omega),\omega)$: The updated dynamics model.
- The optimization of the neural network parameters in KNODE can be done using:
 - Backpropagation.
 - Adjoint sensitivity method, a memory-efficient alternative to backpropagation.

Online Data Collection and Learning

Algorithm 1 Data collection and model updates	Algorithm 2 Online dynamics learning
 Initialize the current time, last save time, total duration, and the collection interval as t_i, t_s, t_N, and t_{col} t_i ← 0 OnlineData ← [] while t_i < t_N do if New model is available then Controller updates new model t_s ← t_i end if if t_i is not 0 and t_i - t_s == t_{col} then Save OnlineData 	1: Initialize the current time and total duration as t_i and t_N 2: $t_i \leftarrow 0$ 3: while $t_i < t_N$ do4: while No new data available do5: Wait6: end while7: Train a new model with the newest data8: Save the trained model9: $t_i \leftarrow$ current time10: end while
10: Save OnlineData 11: $t_s \leftarrow t_i$ 12: OnlineData \leftarrow [] 13: end if 14: Robot updates state using control input 15: Append new robot state and control input to OnlineData 16: $t_i \leftarrow$ current time 17: end while	

- Key design consideration :
 - $\circ\,$ Collection interval t_{col}
 - Model Preservation

- The approximate model \hat{f} is recursively constructed by:

$$egin{aligned} f^{(i+1)} = M_{\psi_{(i+1)}} \left(\hat{f}^{(i)}, e^{i+1-p} f_{ heta_{(i+1)}}
ight) \quad ext{for } i < p, \end{aligned}$$

with the initial condition:

$$\hat{f}^{(0)}= ilde{f}$$

where

- Queue size p: Defines how many previous models (neural networks) are kept.
- Index $\overline{(i+1)}$: Refers to the $(i+1)^{th}$ model update.
- Neural network $f_{ heta_{(i+1)}}$:
 - $\circ\,$ Represents the i^{th} neural network added to the queue, with parameters $heta_{(i+1)}.$
- Transformation matrix M_ψ :
 - $\circ\,$ Two stacked $n\! imes\! n$ identity matrices, where n is the state dimension.
- Training:
 - $\circ\,$ Only the latest $heta_{(i+1)}$ is trained, previous models are frozen.

Applying learned Models in MPC

• Objective: Solve the following constrained optimization problem in a receding horizon manner:

$$igg| \min_{x_0,\ldots,x_N,u_0,\ldots,u_{N-1}} \sum_{i=1}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N igg|$$

• subject to:

$$egin{aligned} x_{i+1} &= f(x_i, u_i), & orall i = 0, \dots, N-1 \ x_i &\in X, \; u_i \in U, & orall i = 0, \dots, N-1 \ x_0 &= x(t), \; x_N \in X_f \end{aligned}$$

• Variables:

- $\circ x_i$: Predicted states.
- $\circ u_i$: Control inputs.
- $\circ~N$: The horizon length.
- $\circ X$, U , X_f : The state, control input, and terminal state constraint sets.
- $\circ f(\cdot, \cdot)$: A discretized version of the learned KNODE model.

• Cost Function Weights:

- $\circ~Q$: Weighting matrix penalizing the states.
- $\circ~R$: Weighting matrix penalizing the control inputs.
- $\circ P$: Terminal state cost matrix.
- Initial Condition:
 - $\circ x(t)$: The state obtained at time step t, which acts as an input to the optimization problem.
- Control Action:
 - \circ Upon solving the optimization problem, the first element of the **optimal control sequence** u_0^* is applied to the robot as the control action.
- Implementation:
 - The optimization problem is implemented and solved using CasADi
 - **IPOPT**, an interior-point method within the CasADi library, is used to solve the problem.
 - The solver is **warm-started** at each time step by providing an **initial guess** of the solution, based on the optimal solution from the previous time step .

Simulation

Dynamics of a Quadrotor

- To apply the **KNODE-MPC-Online framework**, we first construct a **KNODE model** by combining a **nominal model** derived from physics with a **neural network**.
- Nominal Model: For the quadrotor, the nominal model is derived from its equations of motion:

$$m\ddot{r}=mg+R\eta, ~~~I\dot{\omega}= au-\omega imes I\omega$$

• where:

- *r*: **Position** of the quadrotor.
- ω : Angular rates of the quadrotor.
- η : Thrust generated by the motors.
- τ : Moments generated by the motors.
- g: Gravity vector.
- R: Transformation matrix mapping η to accelerations.
- m: Mass of the quadrotor.
- *I*: Inertia matrix of the quadrotor.

- State and Control Input:
 - Define the state as:

$$x:=[r^ op,\dot{r}^ op,q^ op,\omega^ op]^ op$$

• where q denotes the quaternions representing the orientation of the quadrotor.

• Define the control input as:

$$igert u := [\eta^ op, au^ op]^ op$$

- Nominal Component of KNODE:
 - The nominal component of the KNODE model can be expressed as:

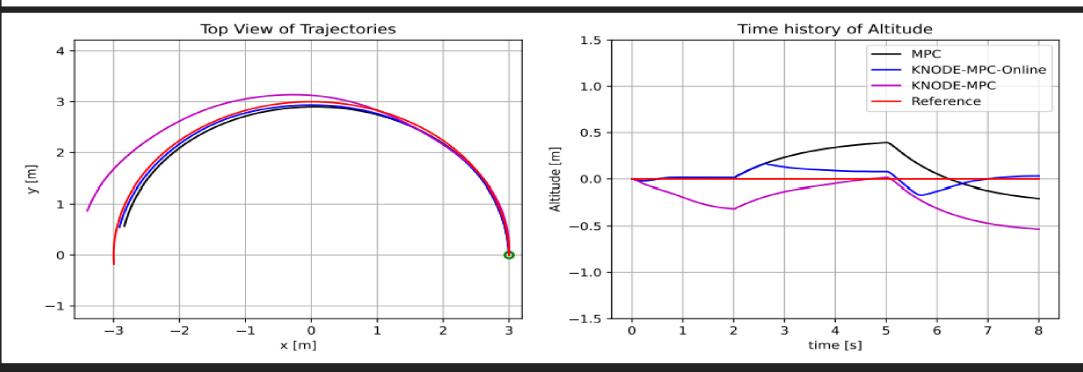
 $ilde{f}(x,u)$

• where:

• $ilde{f}(x,u)$: The nominal dynamics model based on physics for the quadrotor.

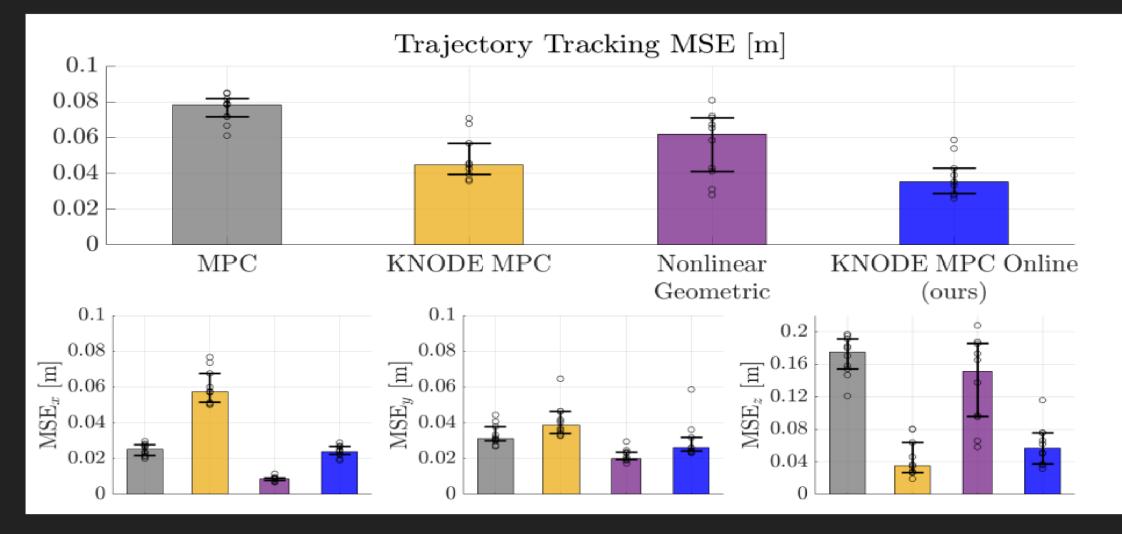
Simulation Setup and Results

Radius [m]	2.0			3.0			4.0		
Speed [m/s]	0.8	1.0	1.2	0.8	1.0	1.2	0.8	1.0	1.2
MPC	0.0904	0.1280	0.1705	0.0949	0.1371	0.1861	0.0967	0.1412	0.1937
KNODE-MPC [25]	0.1222	0.1945	0.2555	0.1974	0.1769	0.2098	0.5303	0.4175	0.3418
Geometric Control [34]	0.2168	0.2572	0.3253	0.2067	0.2267	0.2606	0.2046	0.2194	0.2416
KNODE-MPC-Online (ours)	0.0660	0.1113	0.1678	0.0657	0.1043	0.1554	0.0709	0.1092	0.1571



Physical Experiments

Performance of KNODE-MPC-Online



Conclusion

- Proposed Framework:
 - We introduce a novel and **sample-efficient framework** called **KNODE-MPC-Online**.
 - The framework learns the dynamics of a quadrotor robot in an online setting.
- Application in MPC:
 - The learned KNODE model is applied in a Model Predictive Control (MPC) scheme.
 - The **dynamic model** is **adaptively updated** during deployment to respond to changes.
- Key Results:
 - Simulations and real-world experiments demonstrate that:
 - The proposed framework enables the quadrotor to adapt and compensate for uncertainty and disturbances during flight.
 - It improves the closed-loop trajectory tracking performance.
- Future Work:
 - Applying this framework to **other robotic applications** where dynamic models can be learned to achieve **enhanced control performance**.

Limitations

• Assumption:

- The framework assumes a **continuous-time** nature of system dynamics.
- This limits its applicability to **stochastic systems**.

• Potential Improvements:

- There are variants of NODE that model stochastic differential equations.
- Future work will aim to extend the algorithm to **incorporate stochastic models** to broaden its applicability.

References

- Github repo link
- Main papers:
 - 1. Online Dynamics Learning for predictive Control with an Application to aerial Robots
 - 2. KNODE-MPC: A Knowledge-Based Data-Driven Predictive Control Framework for aerial Robots
- Images sources:
 - All images
- Video Sources:
 - Video zip

Questions?