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Introduction
Abstract

Goal : Improving the accuracy of dynamic models for Model Predictive Control (MPC) in an online setting.

In offline learning:
o Training data is collected.
o Learned via an elaborate training procedure.

o The model does not adapt to disturbances or model errors observed during deployment.

This adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models.

o Techniques inspired by transfer learning are used to improve model accuracy continually.

Demonstrated with a quadrotor:
o This verify the framework through simulations and physical experiments.

o Results show that the approach can account for time-varying disturbances while maintaining good trajectory
tracking performance.
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Context

e MPC:
o Is an optimization-based approach using prediction models.

o Leverages physics models or accurate data-driven models for good closed-loop performance.

Challenge:

o Reliance on accurate dynamic models makes it hard for the controller to adapt to system changes or
environmental uncertainties.

o If robot dynamics change or disturbances occur during deployment, the controller must update its dynamic model
to maintain performance.

Recent advancements in deep learning - potential in modeling dynamical systems.

o Faster optimization due to modern optimization algorithms.

Bootstrapped Lightweight Neural network
Model Based Reinforcement Learning(MBRL)

Work: Instead of augmenting , it directly Updates the dynamic constraints by solving optimization problem.
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Problem Formulation

e The robot dynamics are given by:

o where:

» : State derivative (rate of change of the state).

= f: True dynamics of the robot.

= . State of the robot.

= Uu: Control input to the robot.
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e The sequence of collected data samples is denoted by:

S = [(z(to), ulto)), (x(t1), u(t1)), - --

o where:

= S: Sequence of data samples consisting of states and control inputs.

= tg,%1,...: Timestamps at which the data is collected.

e The updated dynamics model is represented by:

o where:

. f: Updated estimate of the dynamics model.

= . State of the robot.

= u: Control input to the robot.
e fp: Neural Network parametrised with 6

. f:Physics Knowldege
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Online Dynamics Learning

KNODE

e Three aspects of KNODE:

o It requires less data for training.(Improving adaptiveness)

o It is a continuous-time dynamic model.(Compactability)

o Many robotics systems have readily available physics mpdel that can be used as knowledge.

e State and control concatenated and represented as:

e The dynamics is expressed as:

where

o My = Selection Matrix parametrized with 9)(which couples neural network with knowledge)
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e The loss function is defined as:

L(0,v) =

tz—i—l
_—— z /tl

7)|

A

(7)

— 2(7)||?dT + R(8, )

e where:

o m: Number of points in the training trajectory.

o

d: Dirac delta function.

o O o o
8 &

o
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ts € T': Any sampling time in set 7'.

) The estimated state at time 7.

(7): The ground truth state at time 7.
T

R(0,1)): Regularization term on the neural network and coupling matrix parameters.

H (T) (7’) Hz: Squared error between the estimated and true states.
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o The estimated state #(7) comes from the state Z(7), which is given by:

2(7) = g(2(7))

where g is a function that maps Z to a desired state representation,

t;

T

A

f(z(w),w)dw

e where:

o z(t;): The initial condition at time ;.

A

o f(2(w),w): The updated dynamics model.

e The optimization of the neural network parameters in KNODE can be done using:

o Backpropagation.

o Adjoint sensitivity method, a memory-efficient alternative to backpropagation.

ML assignment | Rishi Raj

o Z(7): The state at time 7 generated using the model f
7
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Online Data Collection and Learning

Algorithm 1 Data collection and model updates

1: Initialize the current time, last save time, total duration, and the
collection interval as £;, ts. t v, and €. .;
t; «— 0O
OnlineData <— []
while £; < ¢, do
if New model is available then
Controller updates new model
i‘-_;_; «— i'--f
end if
ift; isnotDand t; — ts == t.,; then
Save OnlineData
OnlineData < []
end if
Robot updates state using control input
Append new robot state and control input to OnlineData
t; <— current time
end while

2:
3:
4:
5:
6:
7
a:
O
0:
l:
2:
3:
L
D
6:
7:

o o o ok

e Key design consideration :
o Collection interval {.,;

o Model Preservation
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Algorithm 2 Online dynamics learning

1:

2:
3

Initialize the current time and total duration as ¥; and ¢ p;
t; — 0O
while ¢; < ¢, do

while No new data available do

Wait

end while

Train a new model with the newest data

Save the trained model

t; +— current time
end while
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e The approximate model f is recursively constructed by:

f(i+1) — M@b(m) (f(i)7ei+1_pf9(i+1)) for i < p,

with the initial condition:
Fo = f
where

e Queue size p: Defines how many previous models (neural networks) are kept.

Index (7 + 1): Refers to the (i 4+ 1) model update.

Neural network fg,

o Represents the 3" neural network added to the queue, with parameters 9(i+1).

Transformation matrix M¢:

o Two stacked n X n identity matrices, where n is the state dimension.

Training:
o Only the latest 9(i+1) is trained, previous models are frozen.
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Applying learned Models in MPC

e Objective: Solve the following constrained optimization problem in a receding horizon manner:

N-1
min E ! Qz; +ui Ru; + 2y Pzy
Loy 9y LN, UQy-- - UN—-1 1
—

o subject to:
;1= f(z;,u;), Vi=0,...,N—1
x, € X, u, €U, Vi=0,...,N—1
ro=x(t), zny € Xy

e Variables:

o &;: Predicted states.

o

u;: Control inputs.

N: The horizon length.

(e}

o

X, U, Xf: The state, control input, and terminal state constraint sets.

f(-,+): A discretized version of the learned KNODE model.

o
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Cost Function Weights:
o (Q: Weighting matrix penalizing the states.

o R: Weighting matrix penalizing the control inputs.

o P: Terminal state cost matrix.

Initial Condition:

o x(t): The state obtained at time step ¢, which acts as an input to the optimization problem.

Control Action:

o Upon solving the optimization problem, the first element of the optimal control sequence u is applied to the
robot as the control action.

Implementation:
o The optimization problem is implemented and solved using CasADi
o IPOPT, an interior-point method within the CasADi library, is used to solve the problem.

o The solver is warm-started at each time step by providing an initial guess of the solution, based on the optimal
solution from the previous time step .
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Simulation

Dynamics of a Quadrotor

e To apply the KNODE-MPC-Online framework, we first construct a KNODE model by combining a nominal model
derived from physics with a neural network.

e Nominal Model: For the quadrotor, the nominal model is derived from its equations of motion:

mr =mg+ Rn, Iw=7—wX Ilw

o where:

= 7: Position of the quadrotor.

= w: Angular rates of the quadrotor.

7: Thrust generated by the motors.

7: Moments generated by the motors.

g: Gravity vector.

R: Transformation matrix mapping 7) to accelerations.

m: Mass of the quadrotor.

I: Inertia matrix of the quadrotor.
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o State and Control Input:

o Define the state as:

= where g denotes the quaternions representing the orientation of the quadrotor.

o Define the control input as:

e Nominal Component of KNODE:

o The nominal component of the KNODE model can be expressed as:

o where:

~

» f(z,u): The nominal dynamics model based on physics for the quadrotor.
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Simulation Setup and Results

Radius [m] 2.0 3.0 4.0
Speed [m/s] 0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 1.2
MPC 0.0904 | 0.1280 | 0.1705 || 0.0949 | 0.1371 | 0.1861 0.0967 | 0.1412 | 0.1937
KNODE-MPC [25] 0.1222 | 0.1945 | 0.2555 0.1974 | 0.1769 | 0.2098 0.5303 | 04175 | 0.3418
Geometric Control [34] 0.2168 | 0.2572 | 0.3253 || 0.2067 | 0.2267 | 0.2606 || 0.2046 | 0.2194 | 0.2416
KNODE-MPC-Online (ours) || 0.0660 | 0.1113 | 0.1678 || 0.0657 | 0.1043 | 0.1554 || 0.0709 | 0.1092 | 0.1571

Top View of Trajectories Time history of Altitude

MPC
KNODE-MPC-Online
KNODE-MPC
Reference

Altitude [m]
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Performance of KNODE-MPC-Online

Trajectory Tracking MSE [m]

H =
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Geometric (ours)
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Conclusion

e Proposed Framework:
o We introduce a novel and sample-efficient framework called KNODE-MPC-Online.

o The framework learns the dynamics of a quadrotor robot in an online setting.

o Application in MPC:
o The learned KNODE model is applied in a Model Predictive Control (MPC) scheme.
o The dynamic model is adaptively updated during deployment to respond to changes.

e Key Results:
o Simulations and real-world experiments demonstrate that:

= The proposed framework enables the quadrotor to adapt and compensate for uncertainty and disturbances
during flight.

= It improves the closed-loop trajectory tracking performance.

e Future Work:

o Applying this framework to other robotic applications where dynamic models can be learned to achieve enhanced
control performance.
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Limitations

e Assumption:
o The framework assumes a continuous-time nature of system dynamics.

o This limits its applicability to stochastic systems.

o Potential Improvements:
o There are variants of NODE that model stochastic differential equations.

o Future work will aim to extend the algorithm to incorporate stochastic models to broaden its applicability.
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