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Gaussian-Poisson Noise in Fluorescence Microscopy Images

A signhal-dependent noise observation model can be represented as:

2(z) = y(z) + o(y(z))¢(2)

= 2 is the observed (recorded) signal

= y is the original (unknown) signal

= ( Is zero-mean independent random noise with standard deviation equal to 1

= g IS a function of y that gives the standard deviation of the overall noise component

In fluorescence microscopy images, the noise term is composed of two mutually independent parts:

a Poisson signal-dependent component, 7, and a Gaussian signal-independent component, .

o(y(z))¢(z) = np(y(z)) + ng()

Denoising Fluorescence Microscopy Images: A Two-Pronged Approach

Image Denoising Model in Action

= The metrics used for accessing the quality of restored images were Peak Signal to Noise Ratio
(PSNR) and Structure Similarity Index Measure (SSIM).

= |t was found that these metrics were mostly unperturbed by image segmentation prior to denoising.
= Change in model architecture is suspected to have played a role.

Change of Course: Do Clusters Capture Noise?

= [mage Segmentation using clustering algorithms
= [mage Denoising using image-specialized deep learning methods
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Figure 1. A Two-Pronged Approach to Denoising

Choice of Clustering Algorithm for Image Segmentation

Metric K-means DBSCAN HDBSCAN
Silhouette Score 0.590 0.972 0.97/5
Davies-Bouldin Index 0.540 0.381 0.408
WSS Score 3.747 0.771 0.962

Cluster-Masking Enhances Denoising Performance of CNNs

= A CNN architecture was used to train two models: (i) on whole images and (ii) on clustered masks.

= CNN architecture: In = Conv. = MaxPool = Conv. = MaxPool — Dense — Out
= CNN,,,4skeq Marginally outperformed CNN,, 7,076

MSE, =840 MSE, =835
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Figure 2. lllustrative Example of CNN,,askea Outperforming CNNypoze

Image Denoising Architecture
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Figure 5. lllustrative Example of Potential Noise in a Cluster

= Some clusters may contain what appears to be only noise.
= Eliminating those clusters can hasten as well as improve the denoising process.
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(a) PSNR as a function of number of K-means clusters (b) SSIM as a function of number of K-means clusters

Figure 6. Effect of Selective Masking on Image Quality Indices

= Pertinent question: Why does increase in K lead to a decay in image quality indices?

Noise-Robustness of Image Denoising Protocols
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Figure 3. Proposed Model Architecture

= A denoising architecture is proposed: considering that masking is beneficial to eliminating noise.
= Literature survey: For deep learning approaches to denoising, DnCNN is optimum. [1]
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Figure 4. DNCNN Model Architecture

= DNnCNN invokes Batch Normalization and Residual Learning to help training & boost denoising.

github.com/sudoeschem & github.com/venkatesh-jha
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Figure /. Robustness of Image Quality Indices to Nose Levels

= Models which incorporate clustering are robust to varying noise-levels.
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Figure 8. Performance of Different Denoising Protocols
= Masking can improve denoising performance of CNNs. Influenced by model architecture.

= Clustering can potentially segregate noise from signal.
= Clustering prior to denoising turns the model robust to noise.
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