
Machine Learning Based Digital Holographic
Microscopy

Aviral Verma
National Insititute of Science Education and Research

Bhubaneshwar, India -752050
aviral.verma@niser.ac.in

Abstract

In this report, we briefly described the experimental details used for recording the
digital hologram. We had reproduced the previous works and provided their results
along with the bit of explanation about the LodeSTAR model. We also showed
the produced synthetic data in comparison with the experimental image with their
pixel intensity hologram. Future work has been provided along with the difficulties
that are currently being faced.

1 Introduction

Digital Holographic Microscopy (DHM) is a technique that can be used to store information about
the particles in 3 dimensions along with various other properties. The interference pattern, which
is called the hologram, is created using a coherent illumination source like a laser. Using a beam
splitter, the laser is split into two parts, one of which goes and interacts with the specimen called the
object beam, and the other is the reference beam, which interferes with the object beam to create
holograms that carry the phase information. In this project, we aim to track the particles’ position in
3D and size in the range of micrometres in a microfluidic device using deep learning algorithms on
the DHM data of the particles.

The particles, in general, follow Brownian motion in a fluid. But when the particle comes under a
local thermal perturbation, it starts to move due to effects like convective flow, thermo-osmotic flow,
thermoviscous flow, and thermophoresis in the fluid. when the fluid transport is dominant, the particle
trajectories directly report on the fluid dynamics. Achieving this local thermal perturbation will be
explained in the experimental setup section. This local thermal perturbation at the microscale can
be used to achieve long-range transport, which can lead to changes in mm scale for both fluid and
particle dynamics. The motivation behind the work is that this long-range movement of particles and
fluids can be used in lab-on-a-chip technology for the mixing of samples and fluids, which is still
a big hurdle. It is very difficult to control the fluid dynamics on such a small scale as the available
external fluid controllers are pretty bulky and cannot be used on such small devices. There is an
apparent mismatch in the size.

2 Experimental Setup in Brief

The experimental setup consists of a flow cell system consisting of two coverslips spaced by a silica
space of known length, and the cell contains water ( n = 1.333) and silica particles having a diameter
of 1.5µm with refractive index (n) = 1.4645. The lower slip contains the uniform distribution of gold
nanorods (AuNRs) on which we shine a light to produce local thermal perturbation. The flow cell is
illuminated using the pump-probe technique. The AuNRs are illuminated by a pump beam with a
wavelength of 780 nm to create heat, and the DHM is done using a probe beam of 465 nm. CMOS



Figure 1: Schematics of Experimental Setup

camera with a resolution of 0.106µm/pixel with a magnification of 55x and a numerical aperture (NA)
of 0.65 was used to record the hologram. The experiment utilizes a label-free thermometry method
that identifies small phase changes caused by temperature-dependent variations in the refractive
index of the imaging medium. These changes accumulate as the incident wavefront traverses the
sample, resulting in an overall difference in optical path length. The fluid dynamics are determined by
tracking the movement of tracer particles in three dimensions. B. Ciraulo et al. developed a custom
off-axis digital holographic microscope that integrates wavefront sensing and 3D particle-tracking
velocimetry, operating in a pump/probe setup. Detailed information about the experimental setup and
the achievement of long-range transport can be found in the reference [1].

3 Reproduced work:

Similar work has been done by Midtvedt et al. [2,] using two different models: one is U-Net,
which is a supervised learning model, and the other is Localization and detection from Symmetries,
Translations And Rotations (LodeSTAR), which is a self-supervised model.

The LodeSTAR model has achieved better results using the same dataset than the U-Net for the same
task. The results they have achieved compared to the existing numerical algorithms have been shown
in fig.(4,5) and their loss in fig.(2,3).

Figure 2: For U-Net Figure 3: For LodeSTAR

LodeSTAR is a system designed to detect microscopic objects by leveraging inherent symmetries.
It operates on the principle of equivariance, meaning that transformations applied to the object
image, such as translations, rotations, and reflections, result in corresponding transformations in
the object’s predicted position. This allows LodeSTAR to accurately locate the centre of an object,
even if its absolute position is unknown. The system achieves this by training a neural network to
establish an exact correspondence between the transformations applied to the input image and their
effects on the output prediction. In addition to the aforementioned capabilities, LodeSTAR can also
process holographic images. These images can be moved to various planes or different axial positions
from the focal plane using Fourier transforms. This introduces another form of equivariance that
LodeSTAR can learn, similar to the equivariances on the plane. This means that LodeSTAR can adapt
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Figure 4: LodeSTAR output vs Numerical
Algorithm predicted z

Figure 5: U-Net output vs Numerical Algo-
rithm predicted z

to changes in the axial position of the object image, further enhancing its ability to locate microscopic
objects accurately. The precise mathematical explanation of the LodeSTAR model can be found in
the method section of ref.[3].

3.1 Experimental details, Data representation and preprocessing:

The experimental data [4] used in the models above have very different optical details than ours, on
which the above models and results have been shown. In their dataset, the particles have a size of
190nm with a refractive index of 1.45. Their hologram has a resolution of 0.345 µ/m, and the ∆ z
= 28µm. In the U-Net model, the no. of features, which are the no. of the output of the model, is
defined as ∆z/resolution.

Figure 6: Propagation of focal plane in z

In order to find the 3D position from the 2D images, the interference pattern was reconstructed into
the Fourier space, which has been used for analysis. Their data representation was done in the form
of a Matlab file containing the reconstructed field. These traces contain the Region of Interest (ROI)
and position in x,y, and z, which were evaluated using numerical algorithms and the mapping matrix.
For U-Net, each particle’s ROI was selected and cropped into a 64x64 image size before giving it to
the model. The holographic image can be moved to various planes, meaning different axial positions
from the focal plane, by using Fourier transforms. This introduces an equivariance that LodeSTAR
can learn, similar to the equivariances on the plane. By training on the image in the top slice, i.e., z =
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0, as shown in Fig. (6), LodeSTAR learns to identify the location of the polystyrene spheres in 3D
space. Here, the measured vertical position is represented as the distance in the image.

4 Synethetic Images

This section will show the images generated to train the U-Net. Before giving images to the model,
we must ensure that the pixel-intensity histograms of simulated and experimental images are the
same. DeepTrack[2] framework produced the simulated images, brightfield microscopy, and other
optical details. The results are shown in fig.(7)

Figure 7: Pixel intensity of Histogram

5 Future Work:

The main problem currently we are facing is of the data representation. There is little information
provided in the literature on reproducing this processed field, tracing, and mapping. Our primary
goal is to find an appropriate way to present the data, which can be given to the model to get the
predictions. One problem with the U-Net is that, for our data, the number of features is 377, which is
same the number of output nodes in the model, which is relatively high, as we cannot train the model
due to GPUs having less memory. Once we can train the model to get the predictions and close the
true values, we will try fine-tuning the model for better predictions and make it more robust.
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