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Abstract

Quantum systems exhibit a complex dynamics, and accurately simulating their1

behavior is computationally demanding. In this paper, we propose a novel approach2

that leverages ML techniques to efficiently compute the wave-function evolution3

of the system using probabilistic measurements taken at discrete time instants.4

1 Introduction5

Quantum mechanics provides a foundational framework for understanding the behavior of micro-6

scopic systems. In classical mechanics, a state is represented by its position in space, x. We can7

predict the future values of x using Newton’s laws. In contrast to classical mechanics, quantum me-8

chanics characterizes the state of a system using a wave-function. This state of the system represented9

by the wave-function ψ(x, t), offers insights into the probability of finding a particle at position x at10

time t, as encapsulated by |ψ(x, t)|2, functioning essentially as a probability distribution function11

(PDF). Consequently, measurements of position involve sampling from this distribution randomly.12

The time-evolution of this wave-function is governed by Schrödinger equation:13

iℏ
∂

∂t
ψ(x, t) = Hψ(x, t) (1)

where:14

• ψ(x, t) is the wave function depending on position r and time t,15

• Ĥ is the Hamiltonian representing the total energy of the system,16

• ℏ is the reduced Planck constant.17

There are many systems like infinite potential well and Harmonic oscillator for which the Hamiltonian18

is known and analytical solutions can be derived. But, often times, the Hamiltonian of the system19

is itself unknown. Our project is motivated by the work of M Casas et. al.[1] where the authors20

have used the concept of Fisher information to predict the pure state’s wave-unction from limited21

measurements of expectation values of an operator. Inspired by the work we are motivated to explore22

a central question: How can we infer or reconstruct wave-functions at discrete time instants, enabling23

the prediction of the time-evolution of such systems with limited measurement data.24

2 Related Works25

In our understanding and formulation of our problem statement, we came across many seminal26

works that resonate with our work. Greydanus et. al. in paper on HNN [2] explains how one27

can extract Hamiltonian of a classical system using neural networks and use them to predict the28

evolution of states for longer period of time. Huang et al. in [3] explains how even if the quantum29
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process involved is highly complex, there exist a low-dimensional effective Hamiltonian that can30

capture the dynamics effectively. This work tries to argue how a NN might be able to approximate31

Hamiltonian of a complex process. Yu Yao, Chao Cao et. al. in [6] explores the idea of training a32

neural network using easily generated physics-rich examples and applying the extracted knowledge33

to solve more complex cases not explicitly represented during training. It aims at generalizability of34

learning through various potential landscapes and use the knowledge to predict time-evolution in new35

landscape. Secor et.al. in [5] discuss the training of ANN as propagators for specific time-dependent36

potentials and time-evolution of states.37

3 Report38

This section summarize the work done till the mid semester.39

3.1 Targets Achieved40

• Choosing the representation of the wave-functions.41

• Prediction of Classical Dynamics using PINN as a proof of concept.42

• Prediction of Quantum dynamics using PINN. We found that interpolation could be achieved,43

but fails miserably at extrapolation.44

3.2 Methodology45

Our first aim was to find the best representation of wavefunction. A function can be repreented by46

coefficients of decomposition in some orthogonal basis (Fourier expansion or Taylor expansion to47

name a few). In figure 1 we compare reconstruction of function from it’s Taylor and Fourier expansion48

as well as from a deep neural network. We found that the best way to represent wavefunction would49

be to use a Neural network (The network is the function itself).50

(a) Taylor Expansion (b) Fourier Expansion (c) Deep NN

Figure 1: Comparing various ways to approximate a noisy function

Next, we wanted to see if one can use Neural network to learn wave-function is particular domain of51

(X,T ). As a proof on concept, we first try to implement the PINN architecture to solve advection52

equation with a sinusoidal initial condition. We obtain 2 as output. The network seemed to capture53

the physics of classical dynamics.54

Figure 2: Prediction of Classical Dynamics - Advection Equation
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Figure 3: Failure of simple PINN

But the method fails to generalize well as can be seen in ??. The actual answer we need is the55

oscillation of Gaussian like peak (as can be seen in the figure). When the model is trained on the56

data with time series information till t = 0.6, it just ‘remembers’ the data and is unable to generalize57

beyond t = 0.6. Hence we can say that the model can interpolate well but is unable to extrapolate.58

3.3 Future Plan59

In future, we plan to solve our problem in two steps. First step will involve determining wave-60

functions using idea in [1]. Along with that, we hope to come up with V from data, along the work61

done in [2]. This way, having determined V , we hope to solve Schrödinger equation using PINN62

based on work in [4]. The future work can be visualized as 4.63

Figure 4: The prediction pipeline to be implemented
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