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Abstract

We investigate data-driven approaches to reconstruct and predict quantum proba-
bility density evolutions from finite measurements sampled from the underlying
probability density. Physics-Informed neural networks (PINNs) based on the conti-
nuity equation and Schrödinger equation have exhibited smearing effect beyond the
training data. To overcome this, we employ the analytical expression to perform
regression. For V = 0, a sequential optimizer strategy enabled accurate regressions
(MSE < 10−10), outperforming PINNs in interpolation and extrapolation with
significantly small amount of input data. For V ̸= 0, while analytical expressions
were derived, the optimization techniques faced limitations.

1 Introduction

Quantum mechanics provides a foundational framework for understanding the behavior of micro-
scopic systems. In classical mechanics, a state is represented by its position in space, x. We can
predict the future values of x using Newton’s laws. In contrast to classical mechanics, quantum me-
chanics characterizes the state of a system using a wave-function. This state of the system represented
by the wave-function ψ(x, t), offers insights into the probability of finding a particle at position x at
time t, as encapsulated by |ψ(x, t)|2, functioning essentially as a probability density. Consequently,
measurements of position involve sampling from this distribution randomly. The time-evolution of
this wave-function is governed by Schrödinger equation:

iℏ
∂

∂t
ψ(x, t) = Ĥψ(x, t) (1)

where:

• ψ(x, t) is the wave function depending on position r and time t,

• Ĥ is the Hamiltonian representing the total energy of the system,
• ℏ is the reduced Planck constant.

There are many systems like infinite potential well and Harmonic oscillator for which the Hamiltonian
is known and analytical solutions can be derived. But, often times, the Hamiltonian of the system is
itself unknown for eg. see Figure 1.

Our project is motivated by the work of M Casas et. al.[1] where the authors have used the concept of
Fisher information to predict the pure state’s wave-function from limited measurements of expectation
values of an operator. We explore a central question: How can we infer or reconstruct wave-functions
at discrete time instants, enabling the prediction of the time-evolution of such systems with limited
measurement data.
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x

V (x)

0

V∞ V∞V = V (x)

L

Figure 1: A complex potential for which Hamiltonian is unknown.

1.1 Formulating the problem statement

Given a set of ‘n’ finite measurements of an observable quantity at discrete time instants labeled as 1,
2, . . . T, where each measurement is in theory a result of sampling from an underlying probability
density represented by |ψ(x, t)|2 = ψ∗ψ, the objectives are as follows:

• Interpolation: Reconstruct the underlying probability density at any intermediate time
instant ’t’ that lies between any two consecutive measurement time instants. This involves
developing a technique to interpolate the probability density based on the available measure-
ments.

• Extrapolation: Extend the techniques to predict the evolution of the probability density
beyond the final measurement time instant ‘T’. In other words, extrapolate the wave-function
to future time instants for which no measurements are available.

The ability to accurately reconstruct and predict continuous functions or probability density function
from discrete measurements has broad applications in various scientific and engineering domains
where continuous monitoring or high-resolution data acquisition may be impractical or infeasible.

1.2 Relevant works

In our understanding and formulation of our problem statement, we came across many seminal
works that resonate with our work. Greydanus et. al. in paper on HNN [2] explains how one
can extract Hamiltonian of a classical system using neural networks and use them to predict the
evolution of states for longer period of time. Huang et al. in [3] explains how even if the quantum
process involved is highly complex, there exist a low-dimensional effective Hamiltonian that can
capture the dynamics effectively. This work tries to argue how a NN might be able to approximate
Hamiltonian of a complex process. Yu Yao, Chao Cao et. al. in [7] explores the idea of training a
neural network using easily generated physics-rich examples and applying the extracted knowledge
to solve more complex cases not explicitly represented during training. It aims at generalizability of
learning through various potential landscapes and use the knowledge to predict time-evolution in new
landscape. Secor et.al. in [5] discuss the training of ANN as propagators for specific time-dependent
potentials and time-evolution of states.

2 Data to Probability density function

In our problem setting, we are provided with a set of finite measurements of an observable quantity at
discrete time instants labeled as 1, 2, . . . , T . As described earlier, these measurements are obtained by
sampling from the underlying probability density function given by the square of the wave-function
at each time instant, i.e., |ψ(x, t)|2.

To estimate the approximate probability density from the available data, we employ a non-parametric
density estimation technique known as kernel density estimation (KDE). KDE is a widely used
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method for constructing a smooth, continuous probability density function from a finite set of sample
points. In our implementation, we choose the Gaussian kernel function:

K(u) =
1√
2π

exp

(
−1

2
u2

)
(2)

It is important to note that while the kernel density estimation provides a smooth approximation of
the underlying probability density, it may introduce some inherent bias and variance due to the choice
of kernel function. However, this non-parametric approach offers flexibility and avoids assumptions
about the specific form of the probability density, making it a suitable choice for our problem where
the true distribution is unknown.

With the approximate probability density obtained from the experimental data, we can proceed
to develop models and techniques for reconstructing and predicting the wave-function evolution,
leveraging both the data-driven and physics-based components of our approach.

3 Baseline Approach: Physics-Informed Neural Networks (PINNs)

3.1 Background and Motivation

Physics-Informed Neural Networks (PINNs), introduced by Raissi and Karniadakis [4], have emerged
as a powerful technique for solving ordinary and partial differential equations using neural networks
by leveraging initial or boundary conditions. PINNs combine the ability of neural networks to learn
complex mappings from data with the incorporation of known physical laws and constraints encoded
as differential equations. This approach has shown promising results in various domains, including
fluid dynamics, heat transfer, and classical mechanics.

Motivated by the success of PINNs in classical physics, we sought to explore their applicability in
the realm of quantum mechanics, specifically for the reconstruction and prediction of wave-function
evolutions. The overarching goal was to develop a data-driven approach that could accurately estimate
the underlying probability density at any desired time instant, given a finite set of measurements.
This would enable us to leverage the available data and physical principles to make predictions
beyond the measurement range, a crucial requirement in scenarios where continuous monitoring or
high-resolution data acquisition is impractical or infeasible.

3.2 Initial Attempts with Governing Equations

3.2.1 Schrödinger Equation

Our initial attempt involved using the time-dependent Schrödinger equation as the governing differ-
ential equation within the PINN framework. However, this approach required prior knowledge of the
potential function V (x) in the Hamiltonian, which was not available in our problem formulation from
the outset. Without this information, it was not possible to fully specify the Schrödinger equation,
prompting us to explore alternative governing equations.

3.2.2 Continuity Equation for Probability Current Conservation

As an alternative, we explored the use of the continuity equation for the conservation of probability
current, given by:

∂|ψ(x)|2

∂t
+
∂J

∂x
= 0 where, J =

iℏ
2m

[
ψ
∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

]
(3)

This differential equation, derived from the Schrödinger equation, governs the conservation of
probability density |ψ(x, t)|2 and the probability current density J(x, t). It is satisfied by the wave-
function evolution for any potential energy function V (r, t).

While this approach seemed promising initially, as it did not require explicit knowledge of the
potential function, we soon realized a critical limitation: the continuity equation alone does not
provide enough constraints to uniquely identify the wave-function for specific potential. Consequently,
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the PINN could predict probability density evolutions that satisfied the continuity equation but did
not necessarily correspond to the desired potential.

3.2.3 Incorporating Data Constraints

To address the limitations of the continuity equation approach, we introduced additional constraints
by incorporating the available measurement data into the loss function. Specifically, we provided
the PINN with measurement data up to 0.6T, where T is the final measurement time instant. By
combining the differential equation loss with a data loss term, we aimed to guide the PINN towards
reconstructing the probability density evolution consistent with both the physical laws (governed by
the continuity equation) and the measured data.

The data loss term should ensure that the PINN’s predictions adhered to the provided measurements
within the training range, while the differential equation loss encouraged the model to learn solutions
that satisfied the continuity equation. By combining these two loss components, we hoped to leverage
the strengths of both data-driven and physics-based approaches, ultimately leading to accurate
reconstructions and predictions of the probability density evolution.

3.3 Re-investigation and Validation

Figure 2: Failure of PINN: The model was given data of probability density upto time instant 0.6
T. Notice how the model interpolates well till 0.6 T. But, beyond the training region, we see an
unexpected smearing of probability density.

Despite incorporating the data constraints, the PINN approach with the continuity equation exhibited
an unexpected smearing behavior in the predicted probability density evolution beyond the training
data range as shown in Figure 2. This behavior was surprising, as the incorporation of the physics-
based differential equation loss should have contributed to better generalization and physically
consistent predictions.

In an attempt to address this issue, we did an hyperparameter tuning process. We explored various
strategies, including adjusting the relative weights of the data and equation loss terms, modifying the
neural network architecture by varying the number of layers and neurons, and experimenting with
different optimization algorithms and learning rates. Despite these efforts, the smearing behavior
persisted, and we were unable to find a satisfactory solution within the PINN framework.

3.3.1 Verifying the Continuity Equation Solution

To understand the root cause of this issue, we first aimed to verify whether the smeared probability
density solutions obtained from the continuity equation approach were indeed satisfying the governing
differential equation. Surprisingly, upon further investigation, we found that the smeared wave-
function predictions still satisfied the continuity equation for the conservation of probability current,
albeit with undesirable characteristics such as the loss of localization and spreading of the probability
density.

4



3.3.2 Validating the PINN Framework

This observation led us to question the effectiveness of the PINN framework itself in handling the
specific problem at hand. To validate the PINN’s capabilities, we implemented it for the Schrödinger
equation with a (specified) zero potential (V = 0), where the expected solution should exhibit
oscillatory behavior within the region of interest.

However, in this case, the PINN struggled to form travelling oscillatory solutions even with use
of sinusoidal activation function [6], further raising doubts about its ability to handle second-order
differential equations effectively, particularly in the context of quantum mechanics.

3.3.3 Testing on Classical Equations

As a validation step, we applied the PINN framework to classical equations like the advection equation,
where it performed as expected, accurately reproducing the known solutions. This suggested that the
PINN might have inherent limitations in learning solutions to specific types of differential equations
encountered in the quantum mechanics domain, such as the Schrödinger equation or the continuity
equation for probability current conservation.

3.4 Outcome and Next Steps

Despite our efforts to resolve the smearing issue and validate the PINN framework for our problem, we
were ultimately unable to find a satisfactory solution within the given time constraints. Consequently,
we decided to explore alternative strategies and approaches, which will be discussed in the following
section.

4 Regression

We started the new approach of regression with the restriction that potential inside the well is zero.
Then, the problem is simply solving the time independent Schrodinger equation for the same,

− ℏ2

2m

∂2

∂x2
ψ(x) = Eψ(x) (4)

and then writing the final solution to time dependent Schrodinger equation 1 as,

ψ(x, t) = ψ(x)e−iEt/ℏ (5)

This is a well known problem with solution,

ψ(x, t) =

N∑
n=1

anψ
◦
n(x)e

−i(E◦
nt+ϕn) (6)

where, E◦
n =

1

2m

(
nπℏ
L

)2

and ψ◦
n(x) =

√
2

L
sin

(nπx
L

)
(7)

The known data for regression is a grid of |ψ(x, t)|2 values, so we square the analytic solution to
arrive at1,

|ψ(x, t)|2 =
2

L

N∑
m,n=1

anam sin
(nπx
L

)
sin

(mπx
L

)
cos ((E◦

n − E◦
m)t+ (ϕn − ϕm)) (8)

Now the task at hand is to determine the parameters an and ϕn, of the order O(2N), from data. The
problem has been reduced to that of regression. We implemented the above using PyTorch and used
common optimisation techniques to minimise the Mean Squared Error(MSE) between prediction
from analytic solution and the given data.

1derivation is provided at the appendix

5



Figure 3: Success of Regression: Here the model was given data upto just 0.2T. Notice the striking
similarity between the actual and predicted dynamics of probability density.

• LBFGS: This uses ... It is good at finding the descent path efficiently but can’t jump out of
local minima. In our case sometime it worked (bringing down the MSE to 1e-10) but there
were times when it got stuck at a local minima (with MSE 1e-7).

• Adam: It has a very slow convergence rate, but it doesn’t normally get stuck at local minima.
In our case it took hours to bring the MSE down to 1e-4.

4.1 Sequential optimisation strategy

After much trial we discovered that an reliable optimisation technique for our case was to use LBFGS
and Adam optimiser in succession. This solved the problem for zero potential case. An example
problem and the prediction is presented in Figure 3.

1 while MSE decreasing:
2 Run LBFGS
3

4 # If MSE has decreaseed below 1e-10 then we can skip Adam else ,
perform Adam till convergence

5 while MSE > 1e-10:
6 Run Adam

Listing 1: "Pseudo-code of Optimisation"

4.2 Extension to arbitrary potential

Although we don’t know the Schrodinger equation for an arbitrary non-zero potential, if we assume it
is independent of time then we can say that the solution has the form,

Ψn(x, t) =

N∑
n=1

anψn(x)e
−i(Ent+ϕn) (9)

Now using the completeness2 of eigenstates of zero potential,

ψn(x) =

N∑
m=1

bnmψ
◦
m(x)eiθnm (10)

2Any function with domain 0 to L can be expanded as a linear combination of the functions ψ◦
n(x).
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Hence, the square of analytic solution is given by3,

|ψ(x, t)|2 =
2

L

N∑
m,n,p,q=1

ambmnapbpq sin
(nπx
L

)
sin

(qπx
L

)
cos ((Em − Ep)t+ (ϕm + θmn − ϕp − θpq))

(11)

The problem has again reduced to determining the parameters an, bnm, En, ϕn and θnm, of the order
O(2N2 + 3N), from data. The regression model for arbitrary potential was implemented as well but
we were unable to find a reliable optimisation technique to find the parameters. We have discovered
that if the energies (En) are fixed then LBFGS + Adam can converge to the true solution but without
any such assumptions it generally doesn’t work.

5 Future work

For future work, several promising directions can be explored. Firstly, resolving the issues encoun-
tered with the regression model for cases where V̸= 0 is a priority. Concurrently, efforts should be
made to improve the PINN approach for cases where the potential is simply, V = 0. By drawing
inspiration from the work on Hamiltonian Neural Networks (HNN) [2], the PINN framework can be
extended to compute the non-zero potential energy functions more effectively.

If successful in addressing the above challenges, a natural extension would be to explore the appli-
cability of the developed techniques to time-dependent potential. This would significantly broaden
the scope of the project, enabling the reconstruction and prediction of wave-function evolutions in
dynamic systems with time-varying potential landscapes.

6 Conclusion

In this work, we explored the application of machine learning techniques to predict the time-evolution
of quantum wave-functions. We investigated two primary approaches: Physics-Informed Neural
Networks (PINNs) and regression.

Our initial attempts with PINNs employed the continuity equation for probability current conservation
as the governing differential equation. While this approach incorporated physics-based constraints, it
resulted in unexpected smearing of the predicted wave-function evolution beyond the training data
range. We also tried to use free particle Schrodinger equation (V=0), but that too didn’t work. We
suspect that PINN has limitations in solving second-order partial differential equations.

The regression approach, implemented for a zero potential case, achieved promising results. By
leveraging the known analytical solutions for the free particle time-independent Schrödinger equation
and employing a regression model to fit the data points, we were able to accurately predict the
wave-function dynamics. We tried to extend this approach to account for arbitrary potentials by
incorporating the completeness of known eigenstates for the zero-potential case to decompose
the unknown eigenstates of unknown potential. However, further work is required to address the
challenges of optimisation to find the parameters associated with non-zero potentials.
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A Supplementary Material

The code pertaining to results in the paper can be found at GitHub

A.1 Derivation of Equation 8

The solution of Schrodinger equation for V = 0 case is,

ψ(x, t) =

√
2

L

N∑
n=1

an sin
(nπx
L

)
e−i(E◦

nt+ϕn) (12)

Then,

|ψ(x, t)|2 =
2

L

N∑
m,n=1

anam sin
(nπx
L

)
sin

(mπx
L

)
e−i((E◦

n−E◦
m)t+(ϕn−ϕm)) (13)

Since m,n are summation indices one can exchange them and then add the two equations to arrive at,
( let ∆ = (E◦

n − E◦
m)t+ (ϕn − ϕm) )

2× |ψ(x, t)|2 =
2

L

N∑
m,n=1

anam sin
(nπx
L

)
sin

(mπx
L

){
ei∆ + e−i∆

}
(14)

= 2× 2

L

N∑
m,n=1

anam sin
(nπx
L

)
sin

(mπx
L

){
ei∆ + e−i∆

2

}
(15)

= 2× 2

L

N∑
m,n=1

anam sin
(nπx
L

)
sin

(mπx
L

)
cos (∆) (16)

A.2 Derivation of Equation 11

Similarly solution for V ̸= 0 is, (here ∆ = (Em − Ep)t+ (ϕm + θmn − ϕp − θpq))

ψn(x) =

N∑
m=1

bnmψ
◦
m(x)eiθnm (17)

|ψ(x, t)|2 =
2

L

N∑
m,n,p,q=1

ambmnapbpq sin
(nπx
L

)
sin

(qπx
L

)
ei∆ (18)

=
2

L

N∑
m,n,p,q=1

ambmnapbpq sin
(nπx
L

)
sin

(qπx
L

){
ei∆ + e−i∆

2

}
(19)

=
2

L

N∑
m,n,p,q=1

ambmnapbpq sin
(nπx
L

)
sin

(qπx
L

)
cos∆ (20)

(21)
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