UMAP: Uniform Manifold Approximation and Projection

C L Srinivas

National Institute of Science Education and Research

Why UMAP? What does it do?

1. HD Distance matrix:- Calculate the pairwise

HD distance between data points and store it in a matrix.
2. Calculate and symmetrize HDSS:- Calculate HDSS for each point with respect to all the other points (even though the only non-zer points in it's own HD cluster).
Initialize a LD graph:- Initialize a
dimension graph using spectral embedding
and the calculated HDSS.
4. Augmenting the LD graph:-

1. Randomly choose pairs of points to ajust:-
Choose three points, say a,b and c sulu
belong to the same H a, cluster c such that a and
belong to different HD clusters.
2. Calculate LDSS and adiust the eoints:- Calculate
the LDSS between a and band between a and a
the LDSS between a and b and between a and c.
Adjust the position of b with respect to a and c.
the relevant cost function to minimize loss (SGD).
High dimensional Similarity Score (HDSS)

$$
H D S S\left(p_{1}, p_{2}\right)=e^{-\left(x-d_{n}\right) / \sigma}
$$

$x=H D$ Euclidian distance between the two points
$d_{n}=$ distance between p_{1} and it's nearest neighbour $\sigma=$ hyperparameter

$$
\sum_{i=1}^{D N-1} H D S S\left(p_{i}\right)=\log _{2}(H D N)
$$

$H D N=$ number of High Dimensional Neighbours
$p_{i}=i^{\text {th }}$ neighbour of p_{1}

Fuzzy Union Operation

$H D S S\left(p_{1}, p_{2}\right)=H D S S\left(p_{1}, p_{2}\right)+\operatorname{HDSS}\left(p_{2}, p_{1}\right)-H D S S\left(p_{1}, p_{2}\right) \cdot \operatorname{HDSS}\left(p_{2}, p_{1}\right)$
Spectral Embedding
For a given matrix, the set of eigenvalues and their corresponding eigenvectors arranged in ascending order is called a "spectrum".
Using this idea, we will see how we can embed, vertices of a multi-cluster graph into a one dimensional-number line.

Modularity and Adjacency Matrices

$$
\phi(A)=\frac{\bmod \{(i, j) \in E ; i \in A, j \notin A\}}{\min \{\operatorname{vol}(A), 2 m-\operatorname{vol}(A)\}}
$$

$A X=Y, y_{i}=\sum_{j=1}^{n} A_{i j} \cdot x_{j}=\sum_{(i, j) \in E} x_{j}$		v_{1}	v_{2}	\ldots	v_{n}
	v_{1}	0	1	\ldots	0
for a graph with two d-regular components	v_{2}	1	0	\ldots	1
$A X=\lambda X$,	\vdots	\vdots	\vdots	\ddots	\vdots
$\quad X= \begin{cases}x_{i}=1 & \text { if } i \in A,\end{cases}$	v_{n}	0	1	\ldots	0

$$
X= \begin{cases}x_{i}=1 & \text { if } i \in A, \\ x_{i}=0 & \text { if } i \in B .\end{cases}
$$

$$
\begin{array}{l|llll}
\dot{v_{n}} & 0 & 1 & \ldots & 0
\end{array}
$$

Graph Laplacian and Eigenvectors

$$
\begin{gathered}
\lambda_{2}=\min _{x} \frac{x^{T} M x}{x^{T} x} \\
\lambda_{2}=\min \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
\end{gathered}
$$

Graph Laplacian

	v_{1}	v_{2}	\ldots	v_{n}
v_{1}	$d_{v 1}$	-1	\ldots	0
v_{2}	-1	d	\ldots	1

$$
\begin{array}{c|cccc}
v_{2} & -1 & d_{v 2} & \ldots & -1 \\
. & & &
\end{array}
$$

$$
\begin{array}{c|cccc}
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{n} & 0 & -1 & \ldots & d_{v n}
\end{array}
$$

Application of Embedding

Initializing Low-Dimensional graph

Computing Low-Dimension Similarity Scores (LDSS) and Shifting the Points in the LD Graph

$$
\operatorname{LDSS}\left(p_{i}, p_{j}\right)=\frac{1}{1+\alpha \mathrm{d}\left(p_{i}, p_{j}\right)^{2 \beta}}
$$

$\alpha=$ parameter
$d\left(p_{i}, p_{j}\right)=L D$ distance between p_{i} and p_{j} $\beta=$ parameter

$s_{n}=$ neighbour similarity score $s_{n n}=$ not neighbour similarity score

References

[1] Amr Elsayyad.
Spectral clustering - stanford university.
YouTube video playlist, 2022.
[2] StatQuest with Josh Starmer.
Umap dimension reduction, mat
Umap dimension reduction, main ideas!!!, March 2022
[3] StatQuest with Josh Starmer.
Umap: Mathematical details (clearly explained!!!!), March 2022.

