

UMAP: Uniform Manifold Approximation and Projection

C L Srinivas

National Institute of Science Education and Research

Why UMAP? What does it do?

- 1. HD Distance matrix:- Calculate the pairwise HD distance between data points and store it in a matrix.
- 2. Calculate and symmetrize HDSS:- Calculate HDSS for each point with respect to all the other points (even though the only non-zero scores will be those with respect to other points in it's own HD cluster).
- 3. Initialize a LD graph:- Initialize a low dimension graph using spectral embedding and the calculated HDSS.
- 4. Augmenting the LD graph:-
- 1. Randomly choose pairs of points to adjust:-Choose three points, say a,b and c such that a and b belong to the same HD cluster and a and c belong to different HD clusters.
- 2. Calculate LDSS and adjust the points:- Calculate the LDSS between a and b and between a and c. Adjust the position of b with respect to a and c, use the relevant cost function to minimize loss (SGD).

Modularity and Adjacency Matrices

$$\phi(A) = \frac{\mod \{(i,j) \in E; i \in A, j \notin A\}}{\min \{\operatorname{vol}(A), 2m - \operatorname{vol}(A)\}}$$

$$AX = Y, y_i = \sum_{j=1}^n A_{ij} \cdot x_j = \sum_{(i,j) \in E} x_j$$

for a graph with two d-regular components

$$AX = \lambda X,$$

$$X = \begin{cases} x_i = 1 & \text{if } i \in A, \\ x_i = 0 & \text{if } i \in B. \end{cases}$$

$$\lambda = d$$

Graph Laplacian and Eigenvectors

$$\lambda_2 = \min_x \ \frac{x^T M x}{x^T x}$$

$$\lambda_2 = \min \sum_{(i,j) \in E} (x_i - x_j)^2 \qquad v$$

Application of Embedding

High dimensional Similarity Score (HDSS)

 $HDSS(p_1,p_2)$ = $e^{-(x-d_n)/\sigma}$ x = HD Euclidian distance between the two points $d_n = \text{distance between } p_1 \text{ and it's nearest neighbour}$

 $\sigma = hyperparameter$

$$\sum_{i=1}^{HDN-1} HDSS(p_i) = \log_2(HDN)$$

HDN = number of High Dimensional Neighbours $p_i = i^{th}$ neighbour of p_1

Fuzzy Union Operation

 $HDSS(p_1, p_2) = HDSS(p_1, p_2) + HDSS(p_2, p_1) - HDSS(p_1, p_2) \cdot HDSS(p_2, p_1)$

Spectral Embedding

For a given matrix, the set of eigenvalues and their corresponding eigenvectors arranged in ascending order is called a "spectrum".

Using this idea, we will see how we can embed, vertices of a multi-cluster graph into a one dimensional-number line.

Computing Low-Dimension Similarity Scores (LDSS) and Shifting the Points in the LD Graph

$$LDSS(p_i, p_j) = \frac{1}{1 + \alpha d(p_i, p_j)^{2\beta}}$$

Graph Laplacian

 $v_1 v_2 \ldots v_n$

 $| 0 1 \dots 0 |$

 $| 1 0 \dots 1$

: : . :

 $v_n \mid 0 \mid 1 \mid \dots \mid 0$

 v_2

÷

	v_1	v_2		v_n
v_1	d_{v1}	-1		0
v_2	-1	d_{v2}		-1
÷	:	:	۰.	:
v_n	0	-1		d_{vn}

 $\alpha = parameter$ $d(p_i, p_j) = LD \ distance \ between \ p_i \ and \ p_j$ $\beta = parameter$

$$cost = \log\left(\frac{1}{s_n}\right) + \log\left(\frac{1}{1 - s_{nn}}\right)$$

 $s_n = neighbour\ similarity\ score$ $s_{nn} = not neighbour similarity score$

References

- [1] Amr Elsayyad. Spectral clustering - stanford university. YouTube video playlist, 2022.
- [2] StatQuest with Josh Starmer. Umap dimension reduction, main ideas!!!, March 2022.
- [3] StatQuest with Josh Starmer. Umap: Mathematical details (clearly explained!!!), March 2022.

