

Demystifying the high dimensional data: tSNE t-Distribution stochastic neighbour embedding

Shourya¹

CS460: Machine Learning Supervisor: Dr. Subhankar Mishra

National Institute of Science Education and Research, Bhubaneshwar

Background

After the advancements in technology, the world has been brimmed with data which has brought a wealth of information, but with it comes a challenge: "**the curse of dimensionality**". As the number of dimensions (features) in our data increases, visualizing and processing it becomes increasingly difficult. This is where dimension reduction techniques, like t-SNE, come into play. These techniques allow us to uncover hidden patterns within the data, making complex information easier to explore and analyze. Ultimately, this leads to increased computational efficiency.

What is tSNE?

Non-linear form dimension reduction, its objective is to embed data from high dimension to lower dimension so as to optimally preserve neighbourhood identity.

Algorithm of t-SNE

Why tSNE?

To illustrate the benefits of t-SNE and the types of problems it excels at, let's consider the MNIST handwritten digit dataset, a popular dataset in machine learning

0000000000 11111111 22222333 33333333 4444444 555555555555 6666665 775566655 777777 88858 99999999999999

Each data point in the high-dimensional space is captured as a probability distribution over its neighbors using a Gaussian kernel, p_{ii} is calculated for d_{ii}

Figure 1: Data points in 2D

Equation 1: Gaussian Kernel

 $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$

It is then mapped to a corresponding point in the lower-dimensional space, Here also probability distribution is calculated for embedded data using t-distribution, q_{ii} is calculated for e_{ii}

Figure 2: Data points in 1D

Equation 2: Heavier tail t-Distribution

To achieve its goal, an iterative optimization process is employed. A cost function is calculated, measuring the difference between the probability distributions of neighbors in the high-dimensional space and the corresponding low-dimensional representation.

$$X_j X_i$$

(a) MNIST sample belonging to the digit '7'.

Figure 4: PCA for MNIST

(**b**) 100 samples from the MNIST training set.

Applications

- Bioinformatics and Genomics
- Natural language processing

Figure 3: Data points in 1D, aligned

Equation 4: Cost function (Kullback–Leibler divergence)

Graph 1: Gaussian distribution in High-D, t-Distribution in Low-D

- Scientific Visualization
- Biomedical Signal processing
- Geological Domain interpretation

References

- 1. <u>https://en.wikipedia.org/wiki/T-</u> <u>distributed_stochastic_neighbor_embedding</u>
- 2. van der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). <u>"Visualizing Data Using</u> <u>t-SNE"</u> (PDF). Journal of Machine Learning Research. **9**: 2579–2605.
- 3. <u>https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.202</u> 0.620143/full
- 4. Baldominos, A.; Saez, Y.; Isasi, P. A Survey of Handwritten Character Recognition with MNIST and EMNIST. *Appl. Sci.* **2019**, *9*, 3169. <u>https://doi.org/10.3390/app9153169</u>
- 5. Pezzotti, Nicola. (2019). Dimensionality-Reduction Algorithms for Progressive Visual Analytics. 10.13140/RG.2.2.35141.50403.
- 6. <u>https://www.scikit-yb.org/en/latest/api/text/tsne.html</u>
- 7. <u>https://doi.org/10.3389/fgene.2020.620143</u>

