
References

Training and InferenceIntroduction

Encoder-Decoder Architecture

TRANSFORMERS : heralding a new era in sequence processing
Saptarshi Datta

Fig 1. Schematic of a Transformer Architecture [1]

 “Attention Is All You Need”. Vaswani, A et al.
https://doi.org/10.48550/arXiv.1706.03762

1.

https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)2.
https://machinelearningmastery.com/the-transformer-model/3.
https://machinelearningmastery.com/the-transformer-attention-mechanism/4.
Various open source websites and YouTube5.

Acknowledgement
Fellowship : Dept. of Atomic Energy, Govt. of India
Valuable feedback and comments : Dr. Subhankar Mishra, Aniket Nath (TA, CS460),
batch-mates undertaking this course

as part of CS-460 Machine Learning course guided by Dr. Subhankar Mishra

The new model proposed in the
paper "Attention is All You Need"
[1] makes use of a previously
uncharted territory and showed
remarkable success in sequence
processing.
The primary focus was on
developing language model and
the Transformer showed
significantly better results than
previously used RNNs or CNNs.
Single-head Self Attention was a
known concept previously. The
main development was by
introducing Multi-head Self
Attention.
A Transformer Model has two
major parts the Encoder and the
Decoder.

The encoder consists of a stack of N=6 identical layers, where each layer is
composed of two sub-layers:
1) The first sub-layer implements a multi-head
self-attention mechanism. It implements h heads
that receive a (different) linearly projected version
of the queries, keys, and values, each to produce h
outputs in parallel that are then used to generate
a final result.
2) The second sub-layer is a fully connected feed-
forward network consisting of two linear
transformations with Rectified Linear Unit (ReLU)
activation in between:

Each sub-layer is also succeeded by a
normalisation layer, layernorm(.), which
normalises the sum computed between the
sub-layer input, x, and the output generated by
the sub-layer itself, sublayer(x):

Normalised = layernorm (x + sublayer(x))

The Transformer architecture cannot inherently
capture any information about the relative
positions of the words in the sequence since it
does not make use of recurrence. This
information has to be injected by introducing
positional encoding to the input embedding.

Fig 2

Fig 3. Positional encoding as
represented in [1]

Masking ensures that the correlation (matrix
components) between one word to its
successive words is made 0 while training. This
is to ensure that the model does not learn with a
prediction bias. Taking the softmax(.) on this
matrix solves it.

Fig 4. A practical example of positional encoding

Fig 5. Masking of successive words
followed by Multi-Head attention

The multi-head mechanism receives the queries
from the previous decoder sub-layer and the
keys and values from the output of the encoder.
This allows the decoder to attend to all the
words in the input sequence. The third layer
implements a fully connected feed-forward
network, similar to the one implemented in the
second sub-layer of the encoder.

For training purposes, the input sequence is prefix appended with a
<START> token and suffix appended with a <END> token. The same is
done for the output if it is also a sequence.
The encoder generates the ENCODED matrix which includes correlation
between each elements in the sequence as well as positional encoding.
This is provided as keys and values to the second decoder sub-layer while
the query comes from the Masked Multi-Head Attention (first sub-layer)
of the decoder.
Upon correct training of the model, the Output Probabilities should cross
a certain threshold (and may not improve significantly any further).

Inference is the implementation of a trained model. Once we have a trained
Transformer model, and assuming that the output is also a sequence, we
supply the <START> token to the Output and the input is as given. The
ENCODED matrix once calculated remains same for the input and we
successively modify the tokens supplied to the Decoder module. This
continues till we receive the <END> token as the output.

Why use TRANSFORMER?
This is primarily Due to the self-attention mechanism, Transformers can
process all elements of a sequence in parallel unlike RNNs. It enables
faster training and inference times, as multiple computations can be
performed simultaneously across different parts of the input sequence.
It allows Transformers to take advantage of hardware accelerators like
GPUs and TPUs more effectively, leading to significant speedups in
training and inference compared to sequential models.
Transformers are highly scalable, meaning they can handle input
sequences of varying lengths without a significant increase in
computational complexity. Unlike recurrent models, which suffer from
vanishing or exploding gradients when processing long sequences,
Transformers maintain stable gradients throughout the entire sequence
length.
Transformers can be scaled up in terms of model size (number of layers,
hidden units, etc.) to improve performance on complex tasks or larger
datasets without sacrificing efficiency. With advancements like sparse
attention mechanisms and model pruning techniques, researchers are
further enhancing the scalability of Transformers, enabling them to
handle even larger datasets and more complex tasks.

Applications
Text Generation: Models like GPT (Generative Pre-trained Transformer)
are proficient in generating coherent and contextually relevant text.
Sentiment Analysis: Transformers-based models effectively analyse
sentiment in text data, facilitating applications in social media
monitoring, customer feedback analysis, and opinion mining.
Question Answering: Transformer-based architectures, such as BERT
(Bidirectional Encoder Representations from Transformers), are capable
of answering questions based on context provided in the input text.
Named Entity Recognition (NER): Transformers are adept at identifying
and classifying named entities (e.g., person names, locations,
organizations) in text data, which is useful in various information
extraction tasks.
Language Understanding: Transformers enable advanced natural
language understanding capabilities, facilitating applications like intent
detection, dialogue systems, and virtual assistants.
Speech Recognition: Transformers can be adapted for speech
recognition tasks, where they process audio input to transcribe spoken
words into text, enabling applications in voice-controlled interfaces and
dictation software.

https://machinelearningmastery.com/the-transformer-attention-mechanism

