
An essential tool in Pytorch: Autograd
Rishav Das 1

1National Institute of Science Education and Research, Bhubaneswar

Introduction[1]

torch.autograd is a vital component of PyTorch, serving as its auto-

matic differentiation engine. It plays a crucial role in training neural

networks. Here’s a brief introduction:

Neural networks are essentially a collection of nested functions

that operate on input data. These functions are defined by param-

eters (weights and biases), which are stored in tensors in PyTorch.

The training of a neural network occurs in two steps: Forward Prop-

agation and Backward Propagation.

Forward Propagation: During forward propagation, the neural net-

work makes a prediction about the correct output by running the

input data through each of its functions.

Backward Propagation: In backward propagation, the neural net-

work adjusts its parameters in proportion to the error in its predic-

tion. This is done by traversing backwards from the output, collect-

ing the derivatives of the error with respect to the parameters of

the functions (gradients), and optimizing the parameters using gra-

dient descent.

torch.autograd records a graph of all operations that create the

data as you execute operations, giving you a directed acyclic graph

whose leaves are the input tensors and roots are the output ten-

sors. By tracing this graph from roots to leaves, you can automati-

cally compute the gradients using the chain rule.

This dynamic computation of gradients at runtime, even in the pres-

ence of decision branches or loops whose lengths are not known

until runtime, makes PyTorch flexible and fast for building machine

learning projects

References

[1] Brad Heintz. The fundamentals of Autograd. Apr. 2021. URL:

https://www.youtube.com/watch?v=M0fX15_-xrY&t=2s.
[2] ElliotWaite. PytorchAutograd explained - in-depth tutorial. Nov.

2018. URL: https://www.youtube.com/watch?v=MswxJw-
8PvE.

Understanding Autograd by simple operations [2]

Figure 1. Example of autograd for simple opperations

Understanding Autograd in NN training

Figure 2. Autograd in action for a pass of NN

Some Important codes while using autograde in NN ′s :
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

prediction = model(some_input)

loss = (ideal_output - prediction).pow(2).sum()

loss.backward()

optimizer.step()

optimizer.zero_grad()

Tutorial to Autograd Poster presentation for the course CS460 rishav.das@niser.ac.in

https://www.youtube.com/watch?v=M0fX15_-xrY&t=2s
https://www.youtube.com/watch?v=MswxJw-8PvE
https://www.youtube.com/watch?v=MswxJw-8PvE
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
mailto:rishav.das@niser.ac.in

	References

