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Clustering Analysis

Clustering is an interesting problem of unsupervised learning → cluster analysis does not use

category labels that tag objects with prior identifiers.

Deals with data structure partitioning in space.

Forms the basis of exploratory data analysis (EDA.)

Figure 1. Dataset in 2D space

Classification of Clustering Algorithms

Flat clustering creates a set of clusters that hold no inherent relationship to one another.

Hierarchical clustering creates a family of sets of clusters.

Centroid-based/Parametric clustering initializes centroids around which clusters form.

Density-based/Non-Parametric clustering prepares clusters by quantifying density.

Clustering Type Flat Hierarchical
Centroid K-means Ward Complete-Linkage
Density DBSCAN HDBSCAN

K-means:
suffers from the choice of parameter K
makes an assumption about the data distribution: the Gaussian-ball assumption

DBSCAN:
gets rid of the Gaussian-ball assumption

the resolution parameter is arbitrary though

Ward Complete-Linkage
Gaussian-ball assumption creeps in; the hierarchical tree needs to be cut somewhere

Hierarchical Density-Based Spatial Clustering of Applications with Noise

The protocol for HDBSCAN is as follows:

Transformation of the dataset to mutual reachability space

Constructing of a minimum spanning tree (MST)

Preparation of a dendrogram for the MST

Pruning of the dendrogram based on minimum cluster size

Extraction of clusters

Transformation of Space

Figure 2. Visualization of the Distance Transformation

dmreach−k(a, b) = max{corek(a), corek(b), d(a, b)}

The entire dataset transformed to mutual reachability space by defining the distance between

any two points as dmreach−k(a, b).
This transformation has the effect of tightening clusters, rendering the algorithm more robust to

noise.

This transformation also has the effect of closely approximating the the hierarchy of level sets of

whatever true density distribution the points were sampled from [1].

Preparation of the Minimum Spanning Tree

Aminimum spanning tree is a subset of the edges of a connected, edge-weighted undirected graph

that connects all the vertices without cycles and ensures minimum possible total edge weight.

Standard algorithms to do so include Prim’s [2] and Kruskal’s [3] algorithms.

(a) Dataset (b) Minimum Spanning Tree

Figure 3. Conversion of the Dataset to the Minimum Spanning Tree

Condensing the Cluster Tree

(a) Dendrogram before Pruning (b) Dendrogram after Pruning

Figure 4. Pruning the Dendrogram based on Minimum Cluster Size

This step condenses down the large and complicated cluster hierarchy into a smaller tree.

To do this, the algorithm takes in a parameter: the minimum number of points that constitute a

cluster (min_cls_size.)
Starting from the root, it is checked if one of the new clusters created by a split has fewer points
than min_cls_size:
If yes,the larger cluster retains the cluster identity

If no, it is a true cluster split

Extraction of Clusters

We want to choose clusters that have a long lifetime.

(a) Extracted clusters (b) Three clusters v/s Two clusters

Figure 5. Extracting stable clusters

The stability of a cluster is defined as: S =
∑

p∈cluster (λp − λbirth)

λ denotes 1
distance

λp denotes the λ value when the point fell out of the cluster.

λbirth denotes the λ value when the cluster split off and became independent.

Starting from the leaf, it is checked if Si
left + Si

right > Si−1:
If yes, the children are true clusters

Otherwise, the parent cluster is true

HDBSCAN in Action: An Application to Noisy, Nested Data

(a) Two Moons (b) K-means (c) DBSCAN (η = 4, ε = 0.1)

Figure 6. Performance of K-means & DBSCAN on Two Moons

(a) Noisy Two Moons (b) DBSCAN (η = 4, ε = 0.1) (c) HDBSCAN

(min_cls_size = 400)

Figure 7. Performance of DBSCAN & HDBSCAN on Noisy Two Moons

Closing Remarks

K-means fails to cluster nested datasets due to the Gaussian-ball assumption.

DBSCAN handles nested datasets well. However, it is not robust to noise.

HDBSCAN can handle noisy, nested data. It also performs well for clusters of varying densities.
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