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Clustering Analysis

= Clustering is an interesting problem of unsupervised learning — cluster analysis does not use
category labels that tag objects with prior identifiers.

= Deals with data structure partitioning in space.
= Forms the basis of exploratory data analysis (EDA.)

Figure 1. Dataset in 2D space

Classification of Clustering Algorithms

Condensing the Cluster Tree

Flat clustering creates a set of clusters that hold no inherent relationship to one another.
Hierarchical clustering creates a family of sets of clusters.

Centroid-based/Parametric clustering initializes centroids around which clusters form.
Density-based/Non-Parametric clustering prepares clusters by quantifying density.

Clustering Type Flat Hierarchical
Centroid K-means | Ward Complete-Linkage
Density DBSCAN HDBSCAN

= K-means:

= suffers from the choice of parameter K
= makes an assumption about the data distribution: the Gaussian-ball assumption

= DBSCAN:

= gets rid of the Gaussian-ball assumption
= the resolution parameter is arbitrary though

= Ward Complete-Linkage

= Gaussian-ball assumption creeps in; the hierarchical tree needs to be cut somewhere

Hierarchical Density-Based Spatial Clustering of Applications with Noise
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(a) Dendrogram before Pruning (b) Dendrogram after Pruning

Figure 4. Pruning the Dendrogram based on Minimum Cluster Size

This step condenses down the large and complicated cluster hierarchy into a smaller tree.

= To do this, the algorithm takes in a parameter: the minimum number of points that constitute a

cluster (min_cls_size.)
= Starting from the root, it is checked if one of the new clusters created by a split has fewer points
than min_cls_size:
» |f yes the larger cluster retains the cluster identity
= |f no, it is a true cluster split

Extraction of Clusters

The protocol for HDBSCAN is as follows:

= Transformation of the dataset to mutual reachability space
= Constructing of a minimum spanning tree (MST)

= Preparation of a dendrogram for the MST

* Pruning of the dendrogram based on minimum cluster size
= Extraction of clusters

Transformation of Space
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Figure 2. Visualization of the Distance Transformation

dmreach—k<aa b) = max{C()Tek(a)a COTGk(b>, d(a, b)}

* The entire dataset transformed to mutual reachability space by defining the distance between
any two points as d,, eqch—k(@, 0).

= This transformation has the effect of tightening clusters, rendering the algorithm more robust to
NoISe.

= This transformation also has the effect of closely approximating the the hierarchy of level sets of
whatever true density distribution the points were sampled from [1].

Preparation of the Minimum Spanning Tree

We want to choose clusters that have a long lifetime.
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Figure 5. Extracting stable clusters
The stability of a cluster is defined as: S = Zpeduster (Ap — Apirtn)

1
ance

" \p denotes the A value when the point fell out of the cluster.

= )\ denotes g

= \y;r¢, denotes the A value when the cluster split off and became independent.
= Starting from the leaf, it is checked if Slieft - Sf;z.ght > gL

» |f yes, the children are true clusters
= Otherwise, the parent cluster is true

HDBSCAN in Action: An Application to Noisy, Nested Data

= A minimum spanning tree is a subset of the edges of a connected, edge-weighted undirected graph
that connects all the vertices without cycles and ensures minimum possible total edge weight.

= Standard algorithms to do so include Prim’s [2] and Kruskal’s [3] algorithms.
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Figure 3. Conversion of the Dataset to the Minimum Spanning Tree

github.com/sudoeschem

(a) Two Moons (b) K-means (c) DBSCAN (n =4, ¢=0.1)

Figure 6. Performance of K-means & DBSCAN on T'wo Moons

(a) Noisy T'wo Moons (b) DBSCAN (n =4, e=0.1) (c) HDBSCAN
(min_cls size = 400)

Figure /. Performance of DBSCAN & HDBSCAN on Noisy Two Moons

Closing Remarks

= K-means fails to cluster nested datasets due to the Gaussian-ball assumption.
= DBSCAN handles nested datasets well. However, it is not robust to noise.
= HDBSCAN can handle noisy, nested data. It also performs well for clusters of varying densities.
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