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Formulation Complexity comparison for a single layer NN Expressivity Measure — Trajectory Length Lower Bounds

» Let the hidden state flow of a network be declared by a system of linear ODEs of the form: Vanilla BPTT Adjoint Expressivity Bias scale Depth
Time O(LxTx2) O(Lf+Lpy)xT) Trajectory length lower bound Weight scale / Width ~ #  Number of discretization steps

dx(t)/dt = —x(t)/7 + S(t), Memory | O(Lx T) 0(1) [ -

and let S(t) € RM represent the following nonlinearity: S(t) = f(x(t), I(t), t,0)(A — x(t)), with parameters ¢ Depth O(L) O(Ls)
and A FWD acc High High O(
: >

BWD acc High Low Neural ODE: E [I(z(9)(t))

dx L
L ouvk 1(I(t
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Then, the Liquid-Time Constant (LTC) Network models the following continous-time dynamical system: _ - _ _
Note: L = number of discretization steps, L = L during forward-pass. L, = L during backward-pass. T = length

d);(tt) _ % + f(x(t),1(t), t,0)|x(t) + f(x(t),1(t), t,0)A

Here, 7 defines the system’s time-constant. LTCs represent ODEs that vary their time-constants in an
input-dependent manner — “liquid” .

Motivation

Instead of modeling implicit nonlinearities, LTCs model linear first-order dynamical systems modulated via
nonlinear interlinked gates.

Inspired by the computational models of neural dynamics in small species.

The LTC update is also similar to that of bilinear-approximated Dynamic Causal Models (DCMs), that are
useful in learning on complex fMRI time-series signals.

The expressivity of the LTC formulation can be studied via trajectory length analysis.
The goal is to capture complex non-linear interactions in potentially irregular time-series data.

New Semi-implicit Fused ODE Solver

Algorithm LTC update by fused ODE Solver

Parameters: 0 = {7("*1) = time-constant, y(M*N) = weights, ’yﬁNXN)

Number of neurons,

Inputs: M-dimensional Input I(t) of length T, x(0)
Output: Next LTC neural state X;; a¢
Function: FusedStep(x(t), I(t), At, 0)
x(t 4 At)(NX T) _ x(t) + Atf(x(t)1(¢),t.0)0A

1+ At (1/7+(x(£).1(2),£.6))

> f(.), and all divisions are applied element-wise.
> © is the Hadamard product.
end Function
Xtrar = X(t)
fori=1...Ldo

Xr+ar = FusedStep(x(t), I(t), At, 6)
end for
return X; a:

= recurrent weights,
,LL(NX” — biases}, AWN*1) — hias vector, L = Number of unfolding steps, At = step size, N =

Recursively Folding Solver Output and Training via BPTT

Algorithm Training LTC by BPTT - Vanilla SGD

Inputs: Dataset of traces [/(t), y(t)] of length T, RNNcell = f(/, x)

Parameter: Loss func L(6), initial param 6, learning rate o, Output w = W, and bias = by,

for i =1... number of training steps do
(Ip,yp) = Sample training batch,  x := x;, ~ p(xy,)
forj=1... T do
X = FUI(E), %), 9(8) = Wourx + bty Liotat = S0 L (2), 5(2)), VL(0) = L
0 =60—aVL(0)
end for
end for
return ¢

of sequence, Depth = computational graph depth.

Summary of Main Contributions

A new paradigm in continuous-time neural networks, effective in learning on irregularly-sampled data.

LTC presents a novel approach for forward and backward passes,

that balances accuracy and computation time.

Trajectory length analysis shows that LTCs are significantly more expressive as compared to Neural Ordinary
Differential Equations (NODE) and established sequence models.

LTC time-constant and neural states are provably stable for unbounded inputs.

LTCs are universal approximators.

Architectures created using LTCs can greatly reduce model size, while aiding explainability.

LTCs can vary their behavior even post-training.

Expressivity Measure — Trajectory Length
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Figure: LTC's trajectory latent space becomes
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Practical Application — Lane Following - Network size comparison
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Figure: Saliency Maps - Where each network learns to attend while driving

Table: Network size comparison

Model CNN parameters RNN neurons RNN synapses RNN trainable parameters

CNN 5,068,900 - - -

CT-RNN 79,420 64 6,112 6,273
LSTM 79,420 64 24,640 24,897
NCP 79,420 9 53 1,065

Limitations

» Vanishing gradient phenomenon limiting applicability to learning long-term dependencies.
» Performance is tied to ODE solver used.
» Highly expressive but at an added time and memory cost.
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