
Liquid Time-Constant Networks
Jyotirmaya Shivottam

23226001
CS660/CS460 - Machine Learning, Spring 2024

Subhankar Mishra Lab
National Institute of Science Education and Research

An OCC of Homi Bhabha National Institute
Bhubaneswar, Odisha, India

Formulation

▶ Let the hidden state flow of a network be declared by a system of linear ODEs of the form:

dx(t)/dt = −x(t)/τ + S(t),

and let S(t) ∈ RM represent the following nonlinearity: S(t) = f (x(t), I(t), t, θ)(A− x(t)), with parameters θ
and A.

▶ Then, the Liquid-Time Constant (LTC) Network models the following continous-time dynamical system:

dx(t)

dt
= −

[1
τ
+ f (x(t), I(t), t, θ)

]
x(t) + f (x(t), I(t), t, θ)A

▶ Here, τ defines the system’s time-constant. LTCs represent ODEs that vary their time-constants in an
input-dependent manner → “liquid”.

Motivation

▶ Instead of modeling implicit nonlinearities, LTCs model linear first-order dynamical systems modulated via
nonlinear interlinked gates.

▶ Inspired by the computational models of neural dynamics in small species.

▶ The LTC update is also similar to that of bilinear-approximated Dynamic Causal Models (DCMs), that are
useful in learning on complex fMRI time-series signals.

▶ The expressivity of the LTC formulation can be studied via trajectory length analysis.

▶ The goal is to capture complex non-linear interactions in potentially irregular time-series data.

New Semi-implicit Fused ODE Solver

Algorithm LTC update by fused ODE Solver

Parameters: θ = {τ (N×1) = time-constant, γ(M×N) = weights, γ
(N×N)
r = recurrent weights,

µ(N×1) = biases}, A(N×1) = bias vector, L = Number of unfolding steps, ∆t = step size, N =
Number of neurons,
Inputs: M-dimensional Input I(t) of length T , x(0)
Output: Next LTC neural state xt+∆t

Function: FusedStep(x(t), I(t), ∆t, θ)

x(t +∆t)(N×T ) = x(t) + ∆tf (x(t),I(t),t,θ)⊙A

1+∆t
(
1/τ+f (x(t),I(t),t,θ)

)
▷ f (.), and all divisions are applied element-wise.
▷ ⊙ is the Hadamard product.
end Function
xt+∆t = x(t)
for i = 1 . . . L do
xt+∆t = FusedStep(x(t), I(t), ∆t, θ)
end for
return xt+∆t

Recursively Folding Solver Output and Training via BPTT

Algorithm Training LTC by BPTT - Vanilla SGD

Inputs: Dataset of traces [I (t), y(t)] of length T , RNNcell = f (I , x)
Parameter: Loss func L(θ), initial param θ0, learning rate α, Output w = Wout , and bias = bout
for i = 1 . . . number of training steps do
(Ib,yb) = Sample training batch, x := xt0 ∼ p(xt0)
for j = 1 . . .T do
x = f (I (t), x), ŷ(t) = Wout.x + bout , Ltotal =

∑T
j=1 L(yj(t), ŷj(t)), ∇L(θ) = ∂Ltot

∂θ
θ = θ − α∇L(θ)
end for
end for
return θ

Complexity comparison for a single layer NN

Vanilla BPTT Adjoint

Time O(L× T × 2) O((Lf + Lb)× T )

Memory O(L× T ) O(1)
Depth O(L) O(Lb)

FWD acc High High

BWD acc High Low

Note: L = number of discretization steps, Lf = L during forward-pass. Lb = L during backward-pass. T = length
of sequence, Depth = computational graph depth.

Summary of Main Contributions

▶ A new paradigm in continuous-time neural networks, effective in learning on irregularly-sampled data.

▶ LTC presents a novel approach for forward and backward passes, that balances accuracy and computation time.

▶ Trajectory length analysis shows that LTCs are significantly more expressive as compared to Neural Ordinary
Differential Equations (NODE) and established sequence models.

▶ LTC time-constant and neural states are provably stable for unbounded inputs.

▶ LTCs are universal approximators.

▶ Architectures created using LTCs can greatly reduce model size, while aiding explainability.

▶ LTCs can vary their behavior even post-training.

Expressivity Measure – Trajectory Length

Input 
trajectory

6-layer, width 100, tanh activations

Projection to trajectory 
latent 2-D space

PCA

L1 L2 L3 L4 L5 L6𝑥 𝑡 = sin 𝑡

𝑦
𝑡
=
co
s(
𝑡)

PCA PCA PCA PCA PCA

Figure: LTC’s trajectory latent space becomes more complex with depth

Figure: Trajectory latent w.r.t. different activations

Figure: Trajectory latent w.r.t. different solvers vis-à-vis baselines

Expressivity Measure – Trajectory Length Lower Bounds

Practical Application — Lane Following - Network size comparison

Figure: Saliency Maps - Where each network learns to attend while driving

Table: Network size comparison

Model CNN parameters RNN neurons RNN synapses RNN trainable parameters

CNN 5,068,900 - - -
CT-RNN 79,420 64 6,112 6,273
LSTM 79,420 64 24,640 24,897
NCP 79,420 19 253 1,065

Limitations

▶ Vanishing gradient phenomenon limiting applicability to learning long-term dependencies.

▶ Performance is tied to ODE solver used.

▶ Highly expressive but at an added time and memory cost.

References & Further Reading

▶ Liquid Time Constant Networks, Hasani et al, 2020, 10.48550/arXiv.2006.04439

▶ Liquid Time Constant Networks - Simons Institute Presentation: https://youtu.be/watch?v=9AxYrmUlA0I

▶ Neural circuit policies enabling auditable autonomy, Lechner et al, 2020, 10.1038/s42256-020-00237-3

▶ Closed-form continuous-time neural networks, Hasani et al, 2022, 10.1038/s42256-022-00556-7

▶ Neural ordinary differential equations, Chen et al, 2018, 10.48550/arXiv.1806.07366

▶ On the Expressive Power of Deep Neural Networks, Raghu et al, 2016, 10.48550/arXiv.1606.05336

github.com/raminmh/liquid_time_constant_networks CS660/CS460 - Machine Learning, Spring 2024 | NISER

https://youtu.be/watch?v=9AxYrmUlA0I
github.com/raminmh/liquid_time_constant_networks

