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h, Predicting the Trend of a Stock with the help of LSTM Neural Network
A DATASET: We will be using the last 4 years of Microsoft Corporation (MSFT) stock
data
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A standard recurrent neural network (RNN) could face the vanishing gradient prob- Figure 2. LSTM Cell Architecture
lem during the training when long temporal sequential input data is provided.
Figure 3. Model details
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An RNN model is usually trained by Back Propagation Through Time (BPTT). To up- | 1
date the weights, we find the gradient with respect to each parameter. Consider Lis Forget Gate: C; | ® f; jl | [ Uh
the loss function. During the training we backpropagate the gradients over time to 260 - f'l f ’)' ’ J
update the weights. fi=0(Wpxhiy+W;*X;) | .\',N |
oLt oL 00" (., oWt on® 204 [
oW o0t op® \ THlopm T oW Learn Gate: C,; & i,
Where, Cy = tanh(W,, « hy_1 + W, * X;) 220 -
ot ﬁ oh) i = o(Wix hiy + Wi x Xy)
Oh(k) el Ohli—1) Remember Gate: 2021-042021-072021-102022-012022-042022-072022-102023-012023-04

Ci=[(Cie1 © fi) @ (ét ® )]

Figure 4. Prediction of Data and comparison with Recursive model
Output Gate: /; = tanh(Cy) ® O,

Overcoming the Vanishing Gradient Problem with LSTM
Ot — O'(WU > ht—l + WU X Xt)

LSTMs are a special kind of RNN, capable of learning long-term dependencies. The References
architecture of LSTM includes specialised mechanisms that allow it to store and re-
trieve information over long sequences. 1. Olah, C. (2015) ‘Understanding LSTM Networks’, colah’s blog, 27 August.
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