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History and Purpose

Since the advent of computers, physics-based simulation models have been widely used to describe, analyze, and predict the behavior of physical systems. Traditionally, these models were
derived from the fundamental principles and equations governing the dynamics of these systems, such as Newton’s laws of motion, Maxwell’s equations, Navier-Stokes equations etc.. In the
2010s, data driven models such as neural networks gained popularity due to their remarkable ability to learn complex patterns and relationships from data. One of the pioneering works in
data driven physics modelling was by M. Raissi, P. Perdikaris and G.E. Karniadakis in 2018 detailed in the paper Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations [1].
Use of neural networks for physics modelling has its notable shortcomings
• Ineffectiveness in respecting the laws of physics : Standard neural networks are almost entirely data-driven and hence might not abide by the fundamental equations of the physical
system

•Unevenly distributed sample data points : The observed data obtained from the system might not be evenly distributed or just simply lacking in quantity.
• Inability to extrapolate predictions : Neural networks are designed to approximate functions only within the region containing the sample points

PINNs were able to mitigate these shortcomings to a large extent using a semi-supervised approach by combining the pattern recognition ability of neural networks along with the differential
equations governing the dynamics of a system. They were successful in solving various complex PDEs such as the Burger’s equation, Diffusion equation etc. and have been used in the fields
of fluid dynamics, quantum mechanics, geophysics and more.

The Algorithm

The cost function is a function which attempts to quantify the difference between the
approximated function and the true function. Typical regression problems employ the
Mean Squared Error (MSE) cost function defined as below.
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where f is the neural network function, xi (sample points) are the inputs to f and yi are
the true values at each xi. The objective of training a Neural Network is to minimize the
value of the cost function
PINNs introduce an additional Differential Cost term to the cost function. The law
of physics which the physical system must adhere to can be expressed as a differential
equation of the form D f=0 where D if a differential operator. If so, the differential cost
term is given by as
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where xj (called collocation points) are sampled from the domain. The values of the
differential expression at a collocation point (D f(xj)) can be calculated by the method of
Automatic Differentiation (Autograd).
The overall cost is simply a weighted sum of these two terms.
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Thus, if the cost function is at a minimum, then the prediction of the neural network
will be close to satisfying the differential equation along with the sample data and hence,
adhere to the laws of physics. Moreover, the true outputs of the collocation points (yj)
are not present in the cost function. This implies any number of collocation points can be
sampled using any distribution from anywhere in the domain.

Sample Code

Example : Damped Simple Harmonic Oscillator

f ′′(x) + 2Gf ′(x) +R2f (x) = 0 (4)

Fields of Application

Fluid Dynamics [2]– Aerodynamics [3]– Weather Prediction [4]–

Medical Imaging [5]– Combustion Science [6]– Signal Processing [7]–
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6. Hosseini, V. R., Mehrizi, A. A., Güngör, A., & Afrouzi, H. H. (2023). Application of a physics-informed neural network to solve the steady-state Bratu

equation arising from solid biofuel combustion theory. Fuel, 332, 125908.https://doi.org/10.1016/j.fuel.2022.125908

7. Russell, M., &Wang, P. (2022b). Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring.

Mechanical Systems and Signal Processing, 168, 108709. https://doi.org/10.1016/j.ymssp.2021.108709


