
Limited-Memory Quasi-Newton Optimization Algorithm

INTRODUCTION

Given a model and dataset, parameter estimation reduces to

solving an unconstrained optimization problem:

x∗ = arg min
x

f (x) (1)

where f is a convex, twice differentiable objective function, and

x ∈ Rn.

The quadratic approximation using Taylor expansion is:

f (x + ∆x) ≈ f (x) + ∆xT∇f (x) + 1
2
∆xT (∇2f (x))∆x

For ∆x such that ∇f (x + ∆x) = 0, Newton’s updates:

xn+1 = xn − t · (∇2f (x))−1∇f (x) (2)

Pros of Newton’s method:

Rapid convergence (typically quadratic), robust and trustworthy.

Cons of Newton’s method:

Heavy computations of Hessian, takes O(n3) operations. Also,
the Hessian may not be invertible or may be ill-conditioned,

leading to numerical instabilities

Test problem: Rosenbrock function

The function is given by:

f (x, y) = (a− x)2 + b(y − x2)2

It exhibits a global minimum at (x, y) = (a, a2)

Figure 1. Contour plot of Rosenbrock function

APPROXIMATED HESSIAN..?

Let Bk be the approximation of the inverse Hessian matrix at

iteration k. The BFGS updates this approximation using the fol-

lowing recurrence relation: [2]

Bk+1 = (I − ρkskyT
k )Bk(I − ρkyksT

k ) + ρksksT
k (3)

Where:

sk is the step vector, representing the change in the solution

from iteration k to k + 1

yk is the change in the gradient vector from iteration k to k + 1

ρk = 1
yT

k sk

I is the identity matrix

The BFGS update is still quite cheap: O(n2) operations.

LIMITED MEMORY-BFGS

L-BFGS implicitly stores a modified version of Hk using a lim-

ited numberm of recent vector pairs (si, yi). This allows efficient

computation of Bk∇fk through vector operations, while replac-

ing the oldest pair with the new (sk, yk) after each iteration.

This brings down the cost of each update to O(mn) operations.
This is great because modest values of ‘m’ produce satisfactory

results.

Psuedocode
0: q ← ∇fk;

0: for i = k − 1, k − 2, . . . , k −m do

0: αi← ρis
T
i q

0: q ← q − αiyi

0: end for

0: r ← Hk
0 q

0: for i = k −m, k −m + 1, . . . , k − 1 do
0: β ← ρiy

T
i r

0: r ← r + si(αi − β)
0: end for

0: stopwith result Hk∇fk r =0

ANALYSIS

Figure 2. Path plots of various optimization algorithm for determining global

minima of Rosenbrock function, with initial guess (−2.2, 1.0)

Algorithm Average Runtime Average iterations

L-BFGS 0.002452 26

BFGS 0.005413 39

CG 0.006460 29

Newton-CG 0.023046 108

Table 1. Results of the comparative study
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