

INTRODUCTION

Given a model and dataset, parameter estimation reduces to solving an unconstrained optimization problem:

$$x^* = \arg\min_{x} f(x) \tag{1}$$

where f is a convex, twice differentiable objective function, and $x \in \mathbb{R}^n$.

The quadratic approximation using Taylor expansion is:

$$f(x + \Delta x) \approx f(x) + \Delta x^T \nabla f(x) + \frac{1}{2} \Delta x^T (\nabla^2 f(x)) \Delta x$$

For Δx such that $\nabla f(x + \Delta x) = 0$, Newton's updates:

$$x_{n+1} = x_n - t \cdot (\nabla^2 f(x))^{-1} \nabla f(x)$$
 (2)

Pros of Newton's method:

Rapid convergence (typically quadratic), robust and trustworthy.

Cons of Newton's method:

Heavy computations of Hessian, takes $\mathcal{O}(n^3)$ operations. Also, the Hessian may not be invertible or may be ill-conditioned, leading to numerical instabilities

Test problem: Rosenbrock function

The function is given by:

$$f(x, y) = (a - x)^{2} + b(y - x^{2})^{2}$$

It exhibits a global minimum at $(x, y) = (a, a^2)$

Figure 1. Contour plot of Rosenbrock function

$$k$$
 is

$$D_k =$$

L-BFGS implicitly stores a modified version of H_k using a limited number m of recent vector pairs (s_i, y_i) . This allows efficient computation of $B_k \nabla f_k$ through vector operations, while replacing the oldest pair with the new (s_k, y_k) after each iteration.

This brings down the cost of each update to $\mathcal{O}(mn)$ operations. This is great because modest values of 'm' produce satisfactory results.

Abhishek Singh

Limited-Memory Quasi-Newton Optimization Algorithm

APPROXIMATED HESSIAN..?

Let B_k be the approximation of the inverse Hessian matrix at iteration k. The **BFGS** updates this approximation using the following recurrence relation: [2]

$$B_{k+1} = (I - \rho_k s_k y_k^T) B_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$
(3)

re:

 s_k is the step vector, representing the change in the solution from iteration k to k+1

is the change in the gradient vector from iteration k to k+1

 $\overline{y_k^T s_k}$

I is the identity matrix

The BFGS update is still quite cheap: $\mathcal{O}(n^2)$ operations.

LIMITED MEMORY-BFGS

Psuedocode

$$q \leftarrow \nabla f_k$$
;
for $i = k - 1, k - 2, \dots, k - m$ do
 $\alpha_i \leftarrow \rho_i s_i^T q$
 $q \leftarrow q - \alpha_i y_i$
end for
 $r \leftarrow H_0^k q$
for $i = k - m, k - m + 1, \dots, k - 1$ do
 $\beta \leftarrow \rho_i y_i^T r$
 $r \leftarrow r + s_i(\alpha_i - \beta)$
end for
stop with result $H_k \nabla f_k$ $r = 0$

CS460 MACHINE LEARNING POSTER SESSION

•	Algorithm
_	L-BFGS
	BFGS
	CG
	Newton-C
•	

Table 1. Results of the comparative study

- [2] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

ANALYSIS

Figure 2. Path plots of various optimization algorithm for determining global minima of Rosenbrock function, with initial guess (-2.2, 1.0)

	Average Runtime	Average iterations
	0.002452	26
	0.005413	39
	0.006460	29
G	0.023046	108

REFERENCES

[1] Richard H. Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis, **24(5):1171–1190, 1987**.