
XGBoost
A Rameswar Patro

National Institute of Science Education and Research, Bhubaneswar

XGBoost

XGBoost, short for Extreme Gradient Boosting, has emerged as

a leading machine learning model due to its exceptional per-

formance across various tasks. Gradient boosting is a powerful

ensemble technique that combines weak learners (e.g., decision

trees) using the gradient descent architecture to enhance predic-

tion accuracy progressively. The key advantage of gradient boost-

ing is that it can iteratively improve the model’s performance by

focusing on areas where the previous models struggled. This ap-

proach can lead to highly accurate models, especially for com-

plex problems. XGBoost is a refined implementation renowned

for speed, scalability, and regularization capabilities.

Objective function

In XGBoost, the objective function quantifies how well the model

is performing and guides the optimization algorithm in finding

the best parameters to minimize or maximize this function.

The objective function in XGBoost consists of two main parts the

loss function and the regularization term. It can be expressed as:

Objective(Θ) = Loss(y, ŷ) + Regularization(Θ),

where Θ represents the model parameters to be optimized (e.g.,

tree structure, leaf weights), y is the true output, and ŷ is the pre-

dicted output.

We are able tominimize the objective function using optimization

techniques like gradient descent.

Loss Function

We use different loss functions depending on the use case.

1. Mean Squared Error (MSE):

Use Case: Regression

Function: Loss(ŷ, y) = 1
n

∑n
i=1(yi − ŷi)

2

2. Cross-Entropy Loss:

Use Case: Binary Classification

: Loss(ŷ, y) = −1
n

∑n
i=1[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

Regulariation

There are two main types of regularization used in XGBoost:

1. L1 Regularization (Lasso): Mathematically, it can be expressed

as the sum of the absolute values of the model weights:

Regularization(Θ) =
1

2
λΣ|θi|

where λ is the regularization parameter and θi’s are the model

parameters. L1 regularization encourages sparsity in the

model by driving some of the model parameters to zero,

effectively selecting a subset of features that are most

informative for prediction.

2. L2 Regularization (Ridge): Unlike L1 regularization, L2

regularization adds a penalty term proportional to the square

of the model parameters:

Regularization(Θ) =
1

2
λΣθ2i

where λ is the regularization parameter and θi’s are the model

parameters. L2 regularization tends to shrink the parameters

towards zero without encouraging sparsity, leading to

smoother models with smaller parameter values.

XGBoost for Regression

In the first step XGBoost determines the structure of the tree

greedily in each level. To find out the best possible structure of

the tree, XGBoost uses the similarity score at each level defined

by
G2
L

HL + λ
+

G2
R

HR + λ
− (GL + GR)

2

HL + HR + λ
− γ,

where GL = Sum of the residuals in left child node, and

HL = Number of residuals in the left child node. The score de-

pends on the specific threshold and the specific feature selected.

Ideally the best theshlod and feature pair is selected at each level.

Analytically solving the objective function, we get the out put

value at each leaf as
Sum of Residuals

Number of residuals + λ
.

Optimizations

XGBoost implements several optimizations to enhance efficiency, scalability,

and performance. Here are some key optimizations in XGBoost:

Cache-aware Access: XGBoost optimizes memory access patterns by

utilizing cache-aware data structures and algorithms. This reduces memory

latency and improves training speed by minimizing the number of cache

misses.

Approximate Tree Learning: XGBoost implements algorithms for

approximate tree learning, such as histogram-based methods, to speed up

tree construction. These methods enable efficient computation of split

points and reduce the computational overhead of tree building.

Parallel and Distributed Computing: XGBoost supports parallel and

distributed computing, leveraging multi-core CPUs and distributed

computing frameworks like Dask or Spark. It parallelizes tree construction

and gradient computations to utilize hardware resources effectively and

scale to large datasets.

Applications

XGBoost has found wide-ranging applications across various do-

mains due to its exceptional performance, scalability, and versa-

tility. Some notable applications include:

Credit Scoring: XGBoost is used for credit risk assessment and

determining the likelihood of default by analyzing customer

data.

Disease Diagnosis: XGBoost models assist in diagnosing

diseases based on patient data, medical imaging, and genetic

information.

CS460: Machine Learning Poster Presentation Supervisor: Dr. Subhankar Mishra

