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Abstract

We explored the use of machine learning (ML) techniques to study the atmospheres
of exoplanets. The traditional methods for analyzing spectral data from exoplan-
etary atmospheres rely on manual inspection and interpretation, which can be
time-consuming and complex. We proposed using a supervised ML approach to
classify and characterize exoplanetary atmospheres based on their spectral features.
This demonstrate the effectiveness of the approach by applying it to a dataset of
simulated exoplanetary spectra, showing that the ML model can accurately classify
the spectra into different atmospheric types and provide estimates of atmospheric
properties. The use of ML in the analysis of exoplanetary atmospheres has impor-
tant implications for the search for habitable exoplanets and the understanding of
planetary systems, particularly in the upcoming era of space telescopes such as the
James Webb Space Telescope.

1 Introduction

Exoplanets that pass in front of their host star in our line of sight are a small fraction ( 1%) of the total
exoplanet population. Observing them is similar to observing the transit of Venus, but from many
light years away. We cannot directly observe the planet itself due to the large distances involved,
so we analyze the variations of light coming from the star. This dip in brightness, which is directly
proportional to the ratio of the areas of the planet and star, is called a lightcurve.

When stellar light passes through a planet’s atmosphere, molecules in the atmosphere can absorb or
re-emit different light wavelengths, which leaves a characteristic fingerprint on the light that reaches
us. By measuring the change in the dips (transit depth) as a function of wavelength/frequency of light,
we can work out which molecules or clouds absorb photons in the atmosphere and understand the
planet’s chemistry, temperature, cloud coverage, wind speeds, and climate. However, this change in
transit depth is only of the order of 0.001% of the light we receive from the star, making this a very
challenging observation.

One of the main challenges of studying exoplanetary atmospheres is the complexity of the planetary
models required to understand the complex processes happening in their atmospheres, including
chemistries, clouds, and dynamics. To overcome the challenges of analyzing spectral data from
exoplanetary atmospheres, machine learning (ML) techniques can be used. By using ML algorithms
to classify and characterize exoplanetary atmospheres based on their spectral features, we can obtain
more reliable and comprehensive results than traditional manual inspection and interpretation methods.
ML techniques can also help identify potential candidates for further study and determine which
exoplanets may have the necessary conditions for life to exist. With the upcoming launch of space
telescopes such as the James Webb Space Telescope, the analysis of exoplanetary atmospheres is
expected to enter a new era. However, this increased data volume presents new challenges that require
efficient and accurate analysis techniques. In light of these developments, the use of ML techniques to
study the atmospheres of exoplanets is a critical area of research that can enhance our understanding
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of the nature and habitability of exoplanets and contribute to the search for life beyond our solar
system.

2 Dataset

We used the dataset used by the authors of the MN18 paper for initial experimentation. The dataset
of 100,000 noisy synthetic spectra was generated by using the forward model of Heng & Kitzmann
(2017). The spectra were generated in the wavelength range 0.8 - 1.7 ym, and five parameters
described each spectrum: temperature (T), volume mixing ratios of water (X g20), ammonia (X x r3),
and hydrogen cyanide (X o), and a constant cloud opacity (ko). The values of the parameters
were chosen randomly from a uniform or log-uniform distribution.
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Figure 1: Generated Dataset containing 13 features and 5 parameters

3 Paper Analysis

3.1 MNI18 Paper

The study proposed using supervised machine learning techniques, specifically Random Forest, to
classify and characterize exoplanetary atmospheres based on their spectra. The authors explained that
using machine learning techniques can significantly improve the efficiency and accuracy of atmo-
spheric characterization, which is crucial for understanding the nature and habitability of exoplanets.
The paper begins by briefly explaining exoplanetary atmosphere characterization techniques and the
challenges of interpreting spectral data. The authors note that traditional methods for analyzing spec-
tral data rely on manual inspection and interpretation, which can be time-consuming and subjective.
Additionally, the complexity of the data and the noise present in observations can make it difficult to
identify patterns and trends.

The authors describe their methodology for using regression trees and bootstrapping to analyze a
dataset of synthetic spectra. They explain that they randomly draw from the training set of 80,000
synthetic spectra to train each regression tree, and that each drawn spectrum is placed back into
the training set, allowing for it to be drawn more than once. They note that a single regression
tree produces predictions with large uncertainties, but that these uncertainties can be mitigated by
combining the responses of multiple trees in a random forest. They performed tests to ensure the
convergence of the predictions using 1000 regression trees, which allowed them to compute the
posterior distributions of the parameters. Overall, this methodology allows for the computation of the
posterior distributions of the parameters for the given data points.

They trained their model on 80,000 synthetic spectra and used it to analyze 20,000 more synthetic
spectra. They found that the outcomes of the retrievals converged when the number of trees used
exceeded 100. They also tested the retrieval outcomes with different levels of assumed noise floors,
which represent the uncertainty in the transit depths of the data points in the synthetic WFC3 spectra.
They found that the variance associated with the true versus predicted values of the parameters
decreased when the assumed noise floor was lower. Overall, these tests demonstrate the robustness of
the authors’ implementation of the random forest method for analyzing the synthetic spectra.

4 Experiments

4.1 Experiment 1

Dataset was provided for the MN18 paper and we used that to train the Random Forest Model using
the 80% split of the training data and using other 20% for testing the model and then used that model
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Figure 2: This shows the coefficient of determination (also known as R?) for each of the 5 parameters
and for the joint prediction, as a function of the number of regression trees used in the random
forest which helps to evaluate the accuracy of the model predictions as a function of the number of
regression trees used in the random forest, as well as the assumed noise floor of the data.(Ref. =
MNI18)

to predict the composition of the planet WASP 12-b whose binned data was also provided. Then
we used the binned data for a newer planet HD209548b and used the earlier trained model for the
prediction of the composition of the planet’s atmosphere.

Prediction for $T (K)%: 892 [+421 -145]
Prediction for H$ 2%0: -2.34 [+1.6 -3.12]
Prediction for HCN: -7.52 [+3.97 -3.6]
Prediction for NH$ 3%: -9.3 [+4.39 -3.1]
Prediction for $\kappa @%: -2.35 [+1.4 -1.32]

Figure 3: Using the model trained on the dataset from the MN18 paper to predict the atmospheric
composition of the planet WASP12-b
(Predicted values alongwith [+10, —10])

4.2 Experiment 2

Pycaret is an open-source machine learning library for Python that enables users to perform end-to-
end machine learning experiments quickly and efficiently. The package includes many pre-processing
and modeling functions, allowing users to build and tune models with just a few lines of code.

The Pycaret package was used to find the best algorithm for a regression problem and it was
determined that the most suitable algorithms for the given dataset are Extra Trees Regressor and
Random Forest Regressor, this suggests that the data has complex relationships and the chosen
algorithms are capable of handling such complexity. Extra Trees Regressor and Random Forest
Regressor are both ensemble algorithms that use a collection of decision trees to make predictions.
They have a reputation for being robust and accurate models that perform well on a variety of datasets.
The choice between Extra Trees Regressor and Random Forest Regressor may depend on factors
such as the size of the dataset, the number of features, and the desired level of interpretability. Extra
Trees Regressor is known for its fast training time and can work well on small datasets, whereas

Prediction for $T (K)$: 1.32e+03 [+967 -492] .
Prediction for H$ 2%0: -7.12 [+4.56 -4.33]
Prediction for HCN: -7.12 [+3.58 -3.75]
Prediction for NH$ 3%: -11.7 [+7.03 -1.34]
Prediction for $\kappa 0%: -1.81 [+2.27 -1.63]

Figure 4: Using the model trained on the dataset from the MN18 paper to predict the atmospheric
composition of the planet HD209548b
(Predicted values alongwith [+10 , —10])
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Random Forest Regressor is often more accurate but can be computationally expensive and slower
to train. Therefore, the specific characteristics of the dataset and project goals should be taken into
consideration when deciding which algorithm to use for the regression problem.

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
et Extra Trees Regressor 238.6207 1249246034 3534246 0.7390 0.2548 0.1829 23830
f Random Forest Regressor 241.1384 127595.1316 357.1680 07334 0.2570 0.1837 | 66150
lightgbm Light Gradient Boosting Machine 262.3880 135255.8088 367.7395 0.7174 0.2618 0.1961  0.0970
knn K Neighbors Regressor 2444891 1399103516 374.0161 0.7077 0.2676 0.1826 0.0990
gbr Gradient Boosting Regressor 310.1038 167458.8657 409.1884 0.6501 0.2888 0.2294 2.4940
ada AdaBoost Regressor 410.2363 244564.0773 4945090 04891 0.3681 0.3405 ' 0.4080
Ir Linear Regression 4074809 2593944266 509.2784 04581 0.3607 0.3106 | 0.5150
br Bayesian Ridge 4074955 2593944003 509.2784 04581 0.3607 0.3107 | 0.0290
dt Decision Tree Regressor 330.1323 259622.7330 5094812 04575 03544 0.2452 0.1360
ridge Ricdge Regression 412.5893 262361.7094 5121870 04519 0.3643 03163 | 0.0180
huber Huber Regressor 398.6638 269333.4790 5189351 04373 03566 0.2782 04110
lasso Lasso Regression 438.0545 286980.4094 535.6846 04004 0.3831 0.3409 @ 0.2650
par Passive Aggressive Regressor 411.6459 289429.3807 537.6923 0.3954 03714 0.2830 0.2100
omp Orthogonal Matching Pursuit 484.5532 351491.4421 592.8413 0.2657 04267 0.3843 0.0180
lar Least Angle Regression 498.9884 393108.0198 626.90% 0.1788 04519 0.3633 | 0.0200
llar Lasso Least Angle Regression 547.1923 401893.8004 633.9365 0.1604 0.4482 0.4440 0.0170
en Elastic Net 582.5949 4518723406 672.2014 0.0560 04697 04738 0.0190
dummy Dummy Regressor 599.6262 478804.8344 691.9437 -0.0002 04808 0.4881 0.0170

Figure 5: Using the PyCaret to find the best suitable model for the problem

Github link for our code and data : https://github.com/LuminAYUSH/ML_Project_group9

S Future plans

We want to use the Dataset from the Ariel ML Data Challenge which is generated with Alfnoor, which
combines the open source TauREx 3 atmospheric modelling suite with the official Ariel instrument
simulator ArielRad to produce large-scale simulations of atmospheres.

We also want to use extra tress regressor because its faster,less compute heavy and best suites the
type of dataset we are using.And also tune the hyperparameters to get the best accuracy from both the
random forest regressor and extra tree regressor.

Explore the possibility to apply neural networks if time permits.
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