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Abstract

We explored the use of machine learning (ML) techniques to study the atmospheres1

of exoplanets. The traditional methods for analyzing spectral data from exoplan-2

etary atmospheres rely on manual inspection and interpretation, which can be3

time-consuming and complex. We proposed using a supervised ML approach to4

classify and characterize exoplanetary atmospheres based on their spectral features.5

This demonstrate the effectiveness of the approach by applying it to a dataset of6

simulated exoplanetary spectra, showing that the ML model can accurately classify7

the spectra into different atmospheric types and provide estimates of atmospheric8

properties. The use of ML in the analysis of exoplanetary atmospheres has impor-9

tant implications for the search for habitable exoplanets and the understanding of10

planetary systems, particularly in the upcoming era of space telescopes such as the11

James Webb Space Telescope.12

1 Introduction13

Exoplanets that pass in front of their host star in our line of sight are a small fraction ( 1%) of the total14

exoplanet population. Observing them is similar to observing the transit of Venus, but from many15

light years away. We cannot directly observe the planet itself due to the large distances involved,16

so we analyze the variations of light coming from the star. This dip in brightness, which is directly17

proportional to the ratio of the areas of the planet and star, is called a lightcurve.18

When stellar light passes through a planet’s atmosphere, molecules in the atmosphere can absorb or19

re-emit different light wavelengths, which leaves a characteristic fingerprint on the light that reaches20

us. By measuring the change in the dips (transit depth) as a function of wavelength/frequency of light,21

we can work out which molecules or clouds absorb photons in the atmosphere and understand the22

planet’s chemistry, temperature, cloud coverage, wind speeds, and climate. However, this change in23

transit depth is only of the order of 0.001% of the light we receive from the star, making this a very24

challenging observation.25

One of the main challenges of studying exoplanetary atmospheres is the complexity of the planetary26

models required to understand the complex processes happening in their atmospheres, including27

chemistries, clouds, and dynamics. To overcome the challenges of analyzing spectral data from28

exoplanetary atmospheres, machine learning (ML) techniques can be used. By using ML algorithms29

to classify and characterize exoplanetary atmospheres based on their spectral features, we can obtain30

more reliable and comprehensive results than traditional manual inspection and interpretation methods.31

ML techniques can also help identify potential candidates for further study and determine which32

exoplanets may have the necessary conditions for life to exist. With the upcoming launch of space33

telescopes such as the James Webb Space Telescope, the analysis of exoplanetary atmospheres is34

expected to enter a new era. However, this increased data volume presents new challenges that require35

efficient and accurate analysis techniques. In light of these developments, the use of ML techniques to36

study the atmospheres of exoplanets is a critical area of research that can enhance our understanding37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



of the nature and habitability of exoplanets and contribute to the search for life beyond our solar38

system.39

2 Dataset40

We used the dataset used by the authors of the MN18 paper for initial experimentation. The dataset41

of 100,000 noisy synthetic spectra was generated by using the forward model of Heng & Kitzmann42

(2017). The spectra were generated in the wavelength range 0.8 - 1.7 µm, and five parameters43

described each spectrum: temperature (T), volume mixing ratios of water (XH2O), ammonia (XNH3),44

and hydrogen cyanide (XHCN ), and a constant cloud opacity (κ0). The values of the parameters45

were chosen randomly from a uniform or log-uniform distribution.46

Figure 1: Generated Dataset containing 13 features and 5 parameters

3 Paper Analysis47

3.1 MN18 Paper48

The study proposed using supervised machine learning techniques, specifically Random Forest, to49

classify and characterize exoplanetary atmospheres based on their spectra. The authors explained that50

using machine learning techniques can significantly improve the efficiency and accuracy of atmo-51

spheric characterization, which is crucial for understanding the nature and habitability of exoplanets.52

The paper begins by briefly explaining exoplanetary atmosphere characterization techniques and the53

challenges of interpreting spectral data. The authors note that traditional methods for analyzing spec-54

tral data rely on manual inspection and interpretation, which can be time-consuming and subjective.55

Additionally, the complexity of the data and the noise present in observations can make it difficult to56

identify patterns and trends.57

The authors describe their methodology for using regression trees and bootstrapping to analyze a58

dataset of synthetic spectra. They explain that they randomly draw from the training set of 80,00059

synthetic spectra to train each regression tree, and that each drawn spectrum is placed back into60

the training set, allowing for it to be drawn more than once. They note that a single regression61

tree produces predictions with large uncertainties, but that these uncertainties can be mitigated by62

combining the responses of multiple trees in a random forest. They performed tests to ensure the63

convergence of the predictions using 1000 regression trees, which allowed them to compute the64

posterior distributions of the parameters. Overall, this methodology allows for the computation of the65

posterior distributions of the parameters for the given data points.66

They trained their model on 80,000 synthetic spectra and used it to analyze 20,000 more synthetic67

spectra. They found that the outcomes of the retrievals converged when the number of trees used68

exceeded 100. They also tested the retrieval outcomes with different levels of assumed noise floors,69

which represent the uncertainty in the transit depths of the data points in the synthetic WFC3 spectra.70

They found that the variance associated with the true versus predicted values of the parameters71

decreased when the assumed noise floor was lower. Overall, these tests demonstrate the robustness of72

the authors’ implementation of the random forest method for analyzing the synthetic spectra.73

4 Experiments74

4.1 Experiment 175

Dataset was provided for the MN18 paper and we used that to train the Random Forest Model using76

the 80% split of the training data and using other 20% for testing the model and then used that model77
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Figure 2: This shows the coefficient of determination (also known as R2) for each of the 5 parameters
and for the joint prediction, as a function of the number of regression trees used in the random
forest which helps to evaluate the accuracy of the model predictions as a function of the number of
regression trees used in the random forest, as well as the assumed noise floor of the data.(Ref. =
MN18)

to predict the composition of the planet WASP 12-b whose binned data was also provided. Then78

we used the binned data for a newer planet HD209548b and used the earlier trained model for the79

prediction of the composition of the planet’s atmosphere.80

Figure 3: Using the model trained on the dataset from the MN18 paper to predict the atmospheric
composition of the planet WASP12-b
(Predicted values alongwith [+1σ , −1σ])

4.2 Experiment 281

Pycaret is an open-source machine learning library for Python that enables users to perform end-to-82

end machine learning experiments quickly and efficiently. The package includes many pre-processing83

and modeling functions, allowing users to build and tune models with just a few lines of code.84

The Pycaret package was used to find the best algorithm for a regression problem and it was85

determined that the most suitable algorithms for the given dataset are Extra Trees Regressor and86

Random Forest Regressor, this suggests that the data has complex relationships and the chosen87

algorithms are capable of handling such complexity. Extra Trees Regressor and Random Forest88

Regressor are both ensemble algorithms that use a collection of decision trees to make predictions.89

They have a reputation for being robust and accurate models that perform well on a variety of datasets.90

The choice between Extra Trees Regressor and Random Forest Regressor may depend on factors91

such as the size of the dataset, the number of features, and the desired level of interpretability. Extra92

Trees Regressor is known for its fast training time and can work well on small datasets, whereas93

Figure 4: Using the model trained on the dataset from the MN18 paper to predict the atmospheric
composition of the planet HD209548b
(Predicted values alongwith [+1σ , −1σ])
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Random Forest Regressor is often more accurate but can be computationally expensive and slower94

to train. Therefore, the specific characteristics of the dataset and project goals should be taken into95

consideration when deciding which algorithm to use for the regression problem.96

Figure 5: Using the PyCaret to find the best suitable model for the problem

Github link for our code and data : https://github.com/LuminAYUSH/ML_Project_group997

5 Future plans98

We want to use the Dataset from the Ariel ML Data Challenge which is generated with Alfnoor, which99

combines the open source TauREx 3 atmospheric modelling suite with the official Ariel instrument100

simulator ArielRad to produce large-scale simulations of atmospheres.101

We also want to use extra tress regressor because its faster,less compute heavy and best suites the102

type of dataset we are using.And also tune the hyperparameters to get the best accuracy from both the103

random forest regressor and extra tree regressor.104

Explore the possibility to apply neural networks if time permits.105
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