
Exoplanetary surface composition 
prediction using ML 

● Train a model to predict percentage surface composition of exoplanets 
(mainly terrestrial) from the reflection photometric flux. 

● Spectra generated using planetary models (ATMOS & 
PICASO) and spectral library (USGS, PSG and MODIS).

● Generate the flux value for each filter 
by convoluting the spectra with the filters’ profile.
 

● This can help characterize future telescopes for 
predicting composition using photometric flux and 
follow up in time-intensive spectroscopic data. 
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Paper Model and Algorithms What the paper does

Pham & Kaltenegger, 
2022:

Follow the water: finding 
water, snow, and clouds 
on terrestrial exoplanets 
with photometry and 
machine learning

Atmospheric Model
● ExoPrime-2

ML Algorithms 
● XG Boost

Albedos Libraries
● USGS Spectral Library

● Creates and analyse a grid of 53,130 reflection spectra of 
Earth-like planets for varying surface compositions and cloud 
coverage.

● Performs binary classification and predicts on the presence of 
snow, clouds, and water on the surface 

● Found Five optimal filters (Feature importance ranking)

● Performs mock Bayesian analysis & MCMC with the identified five 
filters to retreive exact surface compositions 

Pham & Kaltenegger, 
2021:

Color classification of 
Earth-like planets with 
machine learning

Atmospheric Model 
● ExoPrime-2

ML Algorithms
● LDA, KNN, CART, LR, NB, 

SVM, RF, Majority voting 
classifier

Albedo Libraries
● ECOSTRESS – ASTER
● USGS Spectral Library
● The Colour catalogue of 

life

● Analyzes a grid of 318,780 reflection spectra of hypothetical 
planets with different surface compositions and cloud coverage

● Uses six diverse biota samples, including vegetation, biofilm, and 
UV radiation resistant biota.

● Focuses on the Johnson B, V, R, I filters

● Uses 8 machine-learning algorithms to classify the existence 
(binary classification) and fraction of biota (multi-classification) in 
exoplanet spectra with varying S/N ratios.

https://doi.org/10.1093/mnrasl/slac025
https://doi.org/10.1093/mnrasl/slac025
https://doi.org/10.1093/mnrasl/slac025
https://doi.org/10.1093/mnrasl/slac025
https://doi.org/10.1093/mnrasl/slac025
https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library
https://doi.org/10.1093/mnras/stab1144
https://doi.org/10.1093/mnras/stab1144
https://doi.org/10.1093/mnras/stab1144
https://e4ftl01.cr.usgs.gov/ECOSTRESS/
https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library
https://doi.org/10.1073/pnas.1421237112
https://doi.org/10.1073/pnas.1421237112
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https://psg.gsfc.nasa.gov/helpatm.php#materials
https://psg.gsfc.nasa.gov/helpatm.php#materials


Photochemical Model
● Generates an initial atmospheric state

● User-specified boundary conditions:

gas mixing ratios or fluxes and deposition 
velocities, the stellar spectrum, the total 
atmospheric pressure, the initial 
temperature-pressure profile

● 233 chemical reactions and includes 50 chemical 
species, 9 of which are short-lived

● Output: 

altitude-dependent abundances of H
2

O 
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the stratosphere, CO

2
, O
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, O
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Climate Model
● The tropospheric temp. calculated by following a wet 

adiabatic lapse rate to the altitude at which the 
stratospheric temperature is reached

● Input: 

the number of steps to run the model, pressure at 
the surface, pressure at the top of the atmosphere, 
surface temperature, surface albedo, solar 
constant and surface gravity.

● Output: 

altitude, temperature, water mixing ratio

Atmos:  A coupled climate-photochemical model
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PICASO :  A Radiative Transfer Model 
● PICASO is an atmospheric radiative transfer 

model to produce the reflection spectra. The 

original documentation was used as reference for 

using PICASO in our codes.

● PICASO  can be used for obtaining transmission, 

emission and reflection spectra.

● Using PICASO for obtaining the reflection 

spectra of exoplanets  with a certain wavelength 

dependent albedo function for its surface 

components. 

● The main equation used in PICASO is the 

radiative transfer equation given below,

     PICASO takes  the following inputs:

● Basic planetary properties (planet mass, radius, stellar 

spectra)

● PT profile and abundances  ( Obtained from ATMOS)

● Cloud profile (angle-scattering albedo, asymmetry 

and total extinction) (not used in our case). 

Instead albedo of the cloud is obtained from a model 

and is used along with other albedo functions for 

finding effective albedo.

● Surface albedo: can be average surface albedo or 

wavelength dependent surface albedo ( in our case).

https://natashabatalha.github.io/picaso/tutorials.html


Comparing the albedos reference paper used and the same obtained 
from PSG

Albedo used by Pham & Kaltenegger, 2022
for different components.
Source: USGS and ASTER library   

Albedos obtained from PSG 

https://arxiv.org/abs/2203.04201


Data- Set Description

● Six surfaces were considered which are Snow, 

sand, basalt, cloud, vegetation and sea water 

● Permutations with 5 percent steps for these six 

surfaces lead to a total of 53,130 different 

surfaces.

● The data is then divided into training and 

validation data with an 80-20 ratio.

Flux values for the surface combinations  

Surface 
combinations

● The data set provided in the paper which we will be trying to 

reproduce with PICASO and ATMOS consists of reflection spectra for 

various surface combinations.

● Filters are applied on this spectra to obtain the photometric flux. In 

our case we took nine photometric flux values which was found to 

provide us with a good accuracy rate.



Implementing ML Algorithms
We implemented both SVR and Random forest with the following hyperparameters

● For SVR we used linear kernel function which provided the best accuracy
● For random forest the number of estimators was the hyperparameter which was set to 10 in our 

case

We used an 80-20 split for training and testing data.
The mean squared error in both the algorithms are,

● SVR: 0.002024
● Random forest: 0.00235

 Pham & Kaltenegger, 2022  obtained a balanced accuracy 
of around unity for snow and cloud and 0.7 for water 

at S/N=100.

● We compared how SVR performed for 

various kernels (SVR, Polynomial, RBF)

● We found that Linear kernel function 

provides the best accuracy for this problem

Statistics

https://arxiv.org/abs/2203.04201


FUTURE PlANS

Obtain albedo for 
cloud and data-set 
will be complete 

Augment noise,
Training and 

Validation using 
SVR, RF and MLP

Comparing 
spectra from 

paper with the 
one we generate

Surface 
Composition 
Prediction

WORK DONE 
SO FAR

● Literature Review

● Managed to converge ATMOS, where we faced difficulty earlier

● Prepared the code to generate our new data-set after coupling the models (PSG, 

ATMOS and PICASO)

● Implemented preliminary non-linear regression algorithms (SVR and RF) on the 

available data-set of the paper.

● Compared the accuracies of both the algorithms with paper.

● Learned about Neural Network  and will apply MLP when complete data is 

generated


