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Abstract

One of the key factors in identifying life-supporting exoplanets is the study of
the exoplanet’s atmosphere and the determination of their surface composition.
Advanced telescopes like ELTs(Extremely Large Telescopes) and the James Webb
Space Telescope(JWST) have been developed with the capability to obtain atmo-
spheric composition measurements of Earth-sized exoplanets. However, the tradi-
tional methods for obtaining measurements of atmospheric composition through
spectroscopy are resource intensive and time-consuming, which led researchers to
explore the possibility of using photometry data to study the planets. This project
demonstrates the feasibility of using machine learning algorithms for predicting the
surface composition of Earth-like terrestrial exoplanets using photometric flux data.
Since, the photometric flux data is anticipated from advanced telescopes in the
future, our study will help future telescopes in prioritizing the targets of Exoplan-
ets for spectroscopic analysis. Our approach involves employing a combination
of ATMOS, PSG, HELIOS-K and PICASO models to generate the data set and
running the SVR, Random Forest and Neural Network Algorithms to achieve the
objective. The results show that SVR with linear kernel performs best for small
datasets while RFR performs very well for low S/N ratio.

1 Introduction

In recent years, the discovery of exoplanets outside of our own solar system has been a major focus of
astronomical research. With advances in telescope technology, astronomers have been able to detect
thousands of exoplanets, including many that are similar in size and composition to Earth. However,
identifying and characterizing life-supporting exoplanets remains a challenging task. Thus far, the
detection of over 5000 exoplanets has been made, with only a handful of these exoplanets located in
the habitable zone. This region encircles a star and presents the possibility of liquid water existing on
the surface of the planet. Detailed investigations into the atmosphere and surface properties of these
planets are necessary to determine whether they are potentially habitable.
One of the methods employed in analyzing an exoplanet’s atmosphere involves the use of spectroscopy,
which entails observing the spectrum of the exoplanet to look for specific biosignatures. Biosignatures
such as methane or oxygen could indicate the existence of life; however, their detection does not
always imply the presence of life, as they may have other natural causes.
Another way of detecting life on exoplanets involves identifying surface features that may indicate
the presence of living organisms. Previous research has demonstrated that photometric colors of
planetary bodies can differentiate between various types of surfaces, such as icy, rocky, or gaseous
surfaces. Additionally, models of Earth-like exoplanets tend to fall within a specific color space.
Therefore, our work will focus on investigating the surface of exoplanets using the photometric data.
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2 Exoplanetary surface probing using Machine Learning

Previous studies ((Pham & Kaltenegger, 2022) and (Pham & Kaltenegger, 2021)) have explored
the possibility of using broad-band filter photometry combined with machine learning and Markov
chain Monte Carlo (MCMC) to detect water in various forms (snow, clouds, and liquid water) on
Earth-like exoplanets. Specifically, the XGBoost algorithm was trained for binary classification
and to predict the presence of snow, clouds, and water on exoplanetary surfaces. The algorithm
demonstrated high balanced accuracy (> 90%) for snow and clouds with a given S/N ≥ 20 and up to
70% balanced accuracy for liquid water. Additionally, the study identified the top five optimal filters
for identifying these surface features on a terrestrial planet’s surface based on the algorithm’s feature
importance ranking. These filters could be incorporated into telescope designs that search for water
on exoplanets.

To test the performance of these optimal filters, Bayesian inferences using MCMC were carried out
in an Earth case study with around 100 random realizations of planetary models. Results showed
optimal accuracy for snow and clouds at S/N ≥ 50 within approximately 5% of the true flux. However,
liquid water detection proved more challenging, with most predictions falling within 20% of the true
values.

To generate reflection spectra for cold Earth-like exoplanets with modern outgassing rates, a surface
temperature of 273K, and a reduced solar spectrum luminosity of 0.875 L⊙, an advanced coupled
1D Photochemical Climate model, Exo-Prime2 ((Madden & Kaltenegger, 2020)), in conjunction
with a Radiative Transfer component, was employed. The model incorporates key molecules such as
C2H6, CH4, CO,CO2, H2CO,H2O necessary for spectroscopic analysis.

The study incorporates surface reflectivity by selecting six major components, namely water, snow,
basalt, vegetation (aspen leaf), sand, and clouds, whose albedos are integrated into the model. The
MODIS 20 ((King et al., 1997))µm cloud model is used to obtain the albedo of clouds, while the
USGS Spectra Library is used for other major surface components. The atmospheric profile is held
constant, and nine ideal broad-band filters are implemented to generate true flux values within the
wavelength range. Gaussian noise is added to these values to create observed flux values that serve as
the data set for the machine learning algorithm.

In a similar study, (Pham & Kaltenegger, 2021) investigates the identification of surface features and
biota classification using photometry with Johnson filters. They created a reflection spectra grid for
terrestrial earth-like planets with varying surface compositions and cloud coverage, assessing the
sensitivity of the results to six different biota samples, including vegetation and UV-resistant biota.
The balanced accuracy varied between 50% and 75% for different algorithms and depended on the
signal-to-noise ratio.

Baseline Algorithms

In the study by (Pham & Kaltenegger, 2022), the XGBoost algorithm is utilized on simulated
photometric data to detect water, snow, and clouds based on characteristic features. The effectiveness
of this approach is demonstrated on a set of synthetic exoplanet spectra with various levels of noise
and other sources of uncertainty. The accuracy values are compared at different signal-to-noise ratios
to evaluate the performance of the algorithm.

Similarly, in (Pham & Kaltenegger, 2021), the efficacy of seven different algorithms is compared
for predicting the presence of specific biota on the exoplanet surface using simulated photometric
flux with added noise. The classification algorithms include Linear Discriminant Analysis (LDA),
K-Nearest Neighbors (KNN), Classification and Regression Tree (CART), Logistic Regression (LR),
Naive-Bayes Classifier (NB), Support Vector Machine (SVM), Random Forest (RF), Majority voting
classifier, Hard Majority Voting(HMV) and Soft Majority Voting(SMV). The accuracy values are
compared for each of these algorithms with varying signal-to-noise ratios.

3 Experiment Review

Github link Our data and algorithms are contained in the link here: ML data and codes.
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This report describes an attempt to replicate a previous study by (Pham & Kaltenegger, 2022) that
used machine learning (ML) to predict the surface composition of Earth-like exoplanets. The idea
is to assess the feasibility of machine learning regression algorithms in predicting the exact surface
composition of exoplanets.

To achieve the goal, we will divide the work into two goals:

1st goal: To apply the ML algorithms and the techniques proposed in the paper on the data
set already provided in the paper (Pham & Kaltenegger, 2022).

2nd goal: To generate the data set by coupling the the two models Atmos ((Arney et al.,
2016)) and PICASO ((Batalha et al., 2019)) instead of using the standard model EXOPRIME-2
((Pham & Kaltenegger, 2022)).
Finally, combine the generated data set with the avilable data for further training and application of
the techniques and algorithms followed in the 1st section to this combined data set.

Data-set description: The dataset used in this study comprises reflection photometric flux data
for six different surface combinations, including Sand, Sea water, Vegetation, Cloud, Basalt, and
Snow. The flux data is obtained by applying 9 ideal filters of width 0.215 µm to the reflection
spectra over a wavelength range spanning from 0.41 µm to 2.35 µm. The spectra is generated by
applying the planetary models (EXOPRIME2 (in case of the data provided in the paper (Pham &
Kaltenegger, 2022)) and ATMOS coupled to PICASO (in case of the data we planned to generate
)).The flux file has two lists in each row, one corresponding to the label i.e the combination of the
surface composition and the next list corresponding to the feature i.e. the 9 flux values pertaining to
that surface combination. Hence, the dataset covers all possible percentage combinations of these six
reflecting surface components with a step size of 5 percent, resulting in a total of 53,130 combinations
(refer Table: 1). The 9 flux values obtained upon convoluting the spectra with the 9 filters is shown in
Table:2.

Table 1: Surface combinations (Labels)
cloud snow sand seawater basalt veg

0 0.00 0.00 0.00 0.00 0.00 1.00

1 0.00 0.00 0.00 0.00 0.05 0.95

... ... ... ... ... ... ...

53128 0.95 0.05 0.00 0.00 0.00 0.00

53129 1.00 0.00 0.00 0.00 0.00 0.00

Table 2: Flux values for 9 filters (Features)
f1 f2 f3 f4 f5 f6 f7 f8 f9

0 66.4502 70.5596 60.5511 34.8012 13.2305 8.8234 6.3379 0.3508 1.5993

1 67.5648 69.2096 58.6436 33.7876 12.8987 8.7628 6.2505 0.3810 1.6354

... ... ... ... ... ... ... ... ... ...

53129 241.7693 147.7095 93.5636 60.7461 34.6885 22.7134 17.6443 4.5057 6.1786

The surface combinations and flux values as shown in Table 1 and Table 2 are considered as labels
and features respectively for the ML models applied in these data-sets.

Prior work: In the previous report, we made some progress to achieve both the 1st and the 2nd
goal listed here.

To achieve the 1st goal, we trained the algorithms using the dataset from the paper. Our approach
involved predicting the percentage surface combination of exoplanets using regression algorithms.
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Two machine learning algorithms, Support Vector Regression (SVR) and Random forest Regression
(RFR), were used to predict the composition from the photometric flux values. The hyperparameters
in the case of SVR are the kernel function, while that for RFR is the number of trees considered.
The accuracy of the SVR for various kernel functions were compared, and it was found that the
linear kernel performed best for the dataset as shown in Figure:9. Hence, we used linear kernel in
SVR to the data set. The mean squared error (MSE) obtained without adding noise to the validation
dataset for the SVR using the linear kernel for nine filters is 0.00216765. For RFR, the MSE was
calculated to be 0.0035305 with the number of trees taken to be 100. The balanced accuracy obtained
for classification in the reference paper((Pham & Kaltenegger, 2022)) for 100 signal-to-noise ratio
(i.e noiseless signal) for XGBoost was above 95 percent. So, the accuracy we obtained in prediction
using noise-less data and applying regression is quite good.

For the 2nd goal of generating data, the Photochemical Climate model, Atmos is to be used along with
the Radiative Transfer model, PICASO, to generate simulated photometric flux data for exoplanets.
So, in our previous work, The Atmos model ran iteratively until convergence was achieved for the
modern earth conditions. Figure:1 and Figure:2 shows atmos finding convergence for temperature and
water mixing ratio varying with altitute of the atmosphere. After 6 to 7 iterations, the model seems to
have converged completely. Hence the resulting Temperature profiles and Abundances of water and
other molecules were then fed into PICASO. Meanwhile, the albedo values for each of the surface
components are obtained from the Planetary Spectrum Generator (PSG) as shown in Figure:3 and
given as input to PICASO along with the temperature profile and molecular abundance files generated
from Atmos. PICASO is equipped with a surface reflectivity module which is used to generate the
Reflection Spectra. The albedo values from PSG were in close agreement with the values used in
the reference paper((Pham & Kaltenegger, 2022)). However, the opacity file that PICASO used only
had a few molecules and did not consider the spectroscopically active molecules for Modern Earth’s
atmosphere. So, we accounted for that in the later work which is explained in the next section.

Figure 1: Altitude vs Temperature profile Figure 2: Altitude vs Water Mixing Ratio

Figure 3: Albedos of components, taken
from PSG
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4 New Attempts

4.1 Data generation

Modern earth atmosphere was considered for this project which meant an opacity database containing
a wide variety of molecules had to be provided to PICASO to obtain the correct transmission spectra.
The ready made opacity file databases such as DACE did not have all the molecules that was required.
Hence, Helios-K an open source opacity generator had to be used for generating opacities for the
spectroscopicaly active molecules (C2H6, CH4, CO, CO2, H2CO, H2O, H2O2, H2S, HNO3, HO2,
N2O, N2O5, NO2, O2, O3, OCS, OH, SO2) in the case that is being considered(Modern earth
atmosphere). The Helios-K opacity generator is a widely used software tool that is employed in
astrophysical simulations to generate opacity tables for a variety of applications, including stellar
evolution, supernova explosions, and many other areas of research. Opacity tables play a crucial role
in these simulations, as they provide information about the energy transport mechanisms that take
place in various astronomical environments. A flowchart of the data-generation is provided in Figure:4

Figure 4: Data Generation Flowchart

The Helios-K opacity generator is designed to calculate and produce opacity tables based on the
given thermodynamic conditions, including temperature, density, and chemical composition. One
of the key features of the Helios-K opacity generator is its ability to generate opacity tables for a
variety of elements and their isotopes. This feature is essential in this project as we need opacities for
a wide variety of molecules. The Helios-K opacity generator uses state-of-the-art atomic physics
models to compute the opacity of astrophysical materials. These models take into account a range
of physical processes, including atomic absorption, electron scattering, and line transitions. The
tool also incorporates the latest data from experimental and theoretical studies, ensuring that the
computed opacities are as accurate and reliable as possible.

The line lists partition files required as input for HELIOS-K was obtained from HITRAN’s line by
line database and ExoMol.

4.2 Application of ML algorithms

The nine filter functions were convoluted into the spectra provided in the paper to generate 9 flux
values for each combination of the surfaces. The 53130 sets flux data was then divided in the ratioo
of 80:20 for the training and validation set respectively. We added 1 noise realization at a particular
signal to noise ratio (S/N) to each of the flux combination which then served as our validation
set. The following ML algorithms were implemented in the data set and performance(MSE) was
analysed. Multi-layer perceptron (MLP) is a supervised neural network model which is capable
of learning non-linear models. Implementation of MLP was done using tensorflow library. In this
project MLP was trained with the training set and performance was calculated on the validation
set for various signal to noise ratios from zero to hundred in steps of ten and compared with other
regression algorithms like Support Vector Regressor(SVR), Random Forest Regressor(RFR) and
Xgboost. Implementation of SVR and RFR were done using scikit-learn library. Xgboost was run
by using Xgboost library. The comparison was done by taking the MSE for each algorithm. Relu
activation function was used in the hidden layers and a linear activation function was used at the end.
A flowchart for the implementation of the Ml Algorithms is given in Figure: 5
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Figure 5: ML Implementation Flowchart

5 Results and Analysis

(a) SVR (b) RFR

(c) Xgboost (d) MLP

Figure 6: MSE for different training dataset sizes at S/N ratio=70

The models were trained on noiseless dataset and was tested different S/N. The above figures are
shown for S/N = 70. In figure6 we can see how the accuracy of the four algorithms change with
training data size. We see that the SVR reaches the saturation point very easily and is performing
very well even when it is trained with a very small dataset. It saturates at MSE of around 0.753 and
achieves it with just 20% of the training dataset which is around 8500 data points. It performed better
than XGBoost whose accuracy never went below 0.8. MLP accuracy was fluctuating a lot with very
high MSE for small datasets.

6



Figure 7: MSE vs Iteration no: MLP Figure 8: MSE vs number of estimators: RFR

Figure 9: MSE for different kernel functions: SVR

Figure 10: MSE vs SNR(0 to 20) for MLP Figure 11: MSE vs SNR(20 to 100) for MLP

Figure 12: MSE vs SNR(0 to 20)
for SVR,RF and XGBoost

Figure 13: MSE vs SNR(20 to 100)
for SVR,RF and XGBoost
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In figures 7, 9, 8 in the case of test data having a signal to noise ratio of 70 it can be seen how MSE
changes as we change different hyperparameters of each algorithm. In figure 7 we see that that the
MSE is fluctuating a lot but stabilizes below 5 after 90. In the case of 8 we see that the MSE almost
saturates below 0.95 when number of estimators is above 40. From the bar graph shown in figure
9 we see that SVR performs best when linear kernel is selected with MSE just above 0.02 for S/N=100.

In figures 10, 11, 12, 13 we see that how MSE is varying with S/N ratio. For the case of MLP, in
10 and 11, we see that the MSE goes below 10 for S/N ratio of around 25 then fluctuates between
MSE 0.025 and 0.25 between S/N 20 and 100. In figures 12 and 13 we see that Random forest
performs best and stays consistent with MSE staying below 0.1 throughout. SVR performs worse
than XGBoost for a signal to noise ratio below 35 but overtakes XGBoost for S/N ratio above 35.

6 Conclusion

The results show that machine learning algorithms can predict the surface composition of exoplanets
from photometric flux values obtained from their reflection spectra with reasonable accuracy. The
accuracy of the SVR using the linear kernel is found to perform very well compared to all the
other algorithms which was considered when training dataset is small with reasonable amount
of noise(S/N=70). RFR performs best consistently for resonably large datasets with respectable
accuracies even for S/N<20. MLP was seen to not perform so well which might be due to dataset
being very small. The dataset used in this study covers a wide range of surface combinations and is
expected to be useful in the future studies of exoplanets.

7 Further Plan for paper submission

In this section, we outline our future plan for predicting the surface composition of a planet using
spectral analysis. Due to technical limitations, we were unable to obtain the albedo for the cloud
component. Therefore, we will proceed with the remaining five surface components. The process of
generating these molecular opacities takes approximately 2 days to complete. Once complete, we will
use these molecular opacities to generate spectra using PICASO. Since PICASO has already been fed
with pressure-temperature profiles and abundances, generating data will be swift once the opacities
are fed. We will then normalize the generated data. To train the algorithms, we will combine the
generated spectra with the available spectra in the paper, following the same steps as we did with
the available dataset in this report. These steps involve applying filters to the spectra to get flux,
splitting the data into a 20:80 ratio for the training and validation set, and augmenting noise into the
validation set. Ultimately, this will allow us to predict the surface composition of the planet. The
accuracy of the predictions will be dependent on the quality and availability of the spectral data used
for training the algorithms. We aim to improve the accuracy of our method through further refinement
and slight tuning of the hyper-parameters. The results of this work will provide valuable insights into
the surface makeup of planets and their potential for supporting life.
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