Exoplanetary Surface
Composition Prediction using ML
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Applying Neural Network (MLP) —rr—
Calculating the Opacities from HELIOS-K
Applying XGBoost Regression

Augmentation of Noise in 20% dataset
for Validation set

Performance of the ML models with
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Response of ML models on the dataset
with varying hyperparameters
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Atmos: A coupled climate-photochemical model
Photochemical Model Climate Model

Generates an initial atmospheric state

e The tropospheric temp. calculated by following a wet
User-specified boundary conditions: adiabatic lapse rate to the altitude at which the

o . o8 stratospheric temperature is reached
gas mixing ratios or fluxes and deposition

velocities, the- stellar spectrum, the total ® Input:.
atmospheric pressure, the initial

temperature-pressure profile the number of steps to run the model, pressure at

the surface, pressure at the top of the atmosphere,

233 chemical reactions and includes 50 chemical surface témperature, surface albedo, solar
species, 9 of which are short-lived constant and surface gravity.
Output: ' e Output:

altitude-dependent  abundances of H,O altitude, temperature, water mixing ratio

photochemically produced in, or transported to,
the stratosphere, CO,, O,,CH,,O,,N,,and C,H,.
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PICASD : I Radiative Transfer Model

PICASO takes the foIIoWihg inputs:

PICASO is an atmospheric radiative transfer
model to produce the reflection spectra. The
original documentation was used as reference for
using PICASO in our codes.

PICASO can be used for obtaining transmission,
emission and reflection spectra.

Using PICASO for obtaining the reflection
spectra of exoplanets with a certain wavelength
dependent albedo function for its surface
components.

The main equation used in PICASO is the

radiative transfer equation given below,

Basic planetary properties (planet mass, radius, stellar
spectra)

PT profile and abundances ( Obtained from ATMOS)
Cloud profile (angle-scattering albedo, asymmetry
and total extinction) (not used in our case).

Instead albedo of the cloud is obtained from a model
and is used along with other albedo functions for
finding effective albedo.

Surface albedo: can be average surface albedo or
wavelength dependent surface albedo ( in our case).

[I(Tuﬂ) = I (i1, p) €978 — [T S (7, ) e T//“dT’/MJ
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https://natashabatalha.github.io/picaso/tutorials.html

sand seawater basalt

Surface
combinations

Data- Set Description

The data set, provided in the paper which we will be trying to
reproduce with PICASO and ATMOS consists of reflection spectra
for various surface combinations.

Filters are applied on this spectra to obtain the photometric flux. In
our case we took nine photometric flux values which was found to
provide us with a good accuracy rate.

Six surfaces were considered which are Snow, Flux values for the surface combinations

sand, basalt, cloud, vegetation and sea water f1 f2 f3 fa 5 f6 f7 f8 fo
66.450295 70.559679 60.551194 34.801215 13.230524  8.823439 6.337946 0.350842 1.599316

Permutations With 5 percent StepS for these 67.564830  69.209650 58.643643 33.787692 12.898762  8.762820  6.250520 0.381013 1.635478

. ’ . 68.679366  67.859620 56.736091 32774169 12.567000 8702201  6.163094 0411184 1.671641
= Surfaces Iead toatOtaI Of 53’130 dlfferent 69.793902  66.509591 54.828539 31.760645 12235237 8641582  6.075669 0.441354 1.707803

surfaces. ; 70908438  65.159561 52.920988 30.747122 11.903475  8.580963  5.988243 0471525 1.743966

The data is then divided into training and 234117912 142502061 90.005522 58435347 33283890 21.958330 16.991558 4.328158 5.985801
validation data with an 80-20 ratio. 232.629441 141.027892 89.131071 57.823231 33.000671 21.622128 16.787464 4.287007 5.882511
238.863237 146362171 92777791 60.235069 34.058652 22909336 17.573305 4.480611 6353865
245008517 149.283036 93.169635 59.558788 33.361182 21.608670 16.806243 4.282940 5.877620
241.769328 147.709586  93.563699  60.746116 34.688553 22713449 17.644302 4.505732 6.178602




Implementing ML Algorithms

Four ml algorithms with different hyperparameters were implemented and their accuracies :
were compared for various S/N ratios.
The algorithms are

e XGBoost: performed better than SVR for signal to noise ratio<35

e MLP: performed poor compared to other algorithm probably due to the small training
dataset

e SVR: performed very well when size of the training dataset was very small

e RFR: performed very well and was consistent for even very low S/N ratio

e The hyperparameters for these algorithms were also opt1m1zed aiming for a good
balance between accuracy and run-time

Results )

N



MSE for different training dataset sizes
atSIN="70
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MSE for different training dataset sizes
atSIN="70

Percentage of training set vs Mean square error Percentage of training set vs Mean square error
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MSE of SVR, RF and XGBoost
for varying S/N

MSE vs SNR MSE vs SNR
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MSE of MLP for varying S/N

MSE vs SNR MSE vs SNR
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Number of iterations vs Mean square error Number of estimators vs Mean square error

MSE for varying
hyperparameters
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Mean square error
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Conclusions

e It was shown that ML algorithms can be used to predict with reasonable accuracy the surface
composition of exoplanets ,

e The accuracies of the ML algorithms were compared and the hyperparameters were optimized for each
algorithm '

e MLP did not perform as good as the other algorithms due to the small dataset that was considered.

e RFR performs best consistently for reasonably large datasets with respectable accuracies even for
S/N<20. .

e The accuracy of the SVR using the linear kernel is found to perform very well compared to all the other
algorithms which was considered when training dataset is small with reasonable amount of
noise(S/N=70). ' ;

N



Future Plans

e Completing the opacity generation for modern earth atmospheric molecules using

HELIOS-K :

Generation of Spectra using PICASO after opacities are fed into it

Normalization of the generated data set

Addition of the data set into the available set to further train models

Repetition of the techniques and algorithms applied on the available data set for this

new data set, '

e Improve the accuracy of our method through further-refinement and slight tuning of the
hyper-parameters as concluded earlier
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