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Abstract

The formation and evolution of the universe, and the galaxies in it is a much1

researched topic, with too less labour to look deep into it. Using Machine Learning2

to understand this evolution through simulations is the next best option to solve3

the mysteries within a satisfactory error bar. One of the main topics for the same4

questions the amount of mass formed inside the parent halo/galaxy, compared to5

the amount of mass accreted by the same through its satellite halos, and it gains6

significance as it provides insights in the assembly history of galaxies, the merger7

history as well as the interactions on which galaxy evolution depends. In this report,8

we have used random forest (RF) as a means of studying the same and predicting9

the ex-situ mass fractions (facc) of various galaxies using the TNG simulation.10

1 Introduction11

The origin and evolution of galaxies are two of the most active fields of astrophysical research. The12

Lambda Cold Dark Matter (or ΛCDM) hypothesis is the most recent manifestation of our knowledge13

of the origins of the Universe. It advances the big bang hypothesis by positing that most of the14

physical substances in the Universe is made up of a material known as dark matter. Galaxies arise15

in the ΛCDM structure creation paradigm by the cooling and condensation of gas at the centre of16

dark matter halos. According to the theory, galaxy formation occurs in two stages: an early rapid17

production of in-situ stars by gas cooling, followed by a later period of mass increase of ex-situ stars18

via accretion of smaller satellite galaxies. These satellite galaxies were earlier considered as the19

central galaxies of smaller halos. Satellite galaxies, or the subhalos as we call them after they fall20

into the larger halos, loose stellar mass through tidal stripping.21

One of the reasons we can differentiate between the in-situ and ex-situ mass is that, the accreted22

stellar mass makes the outer regions of the parent halo, and are metal poor as compared to the in-situ23

mass. The next question which arises is, what is the importance of finding the ex-situ mass fraction24

(which will be referred as facc throughout the report). The ex-situ mass fraction of a galaxy is the25

fraction of its total mass that comes from accreted material, which includes gas and stars that were not26

originally formed within the galaxy itself, but were instead acquired through mergers or interactions27

with other galaxies. The ex-situ mass fraction derives its significanvce from the fact that it gives28

information on the he assembly history of galaxies, the merger history as well as the interactions on29

which galaxy evolution depends. Also, it comments of=n the galaxy properties, surroundings as well30

as the age of the galaxy.31

As mentioned, we use RF to study the process of stellar assembly through the TNG simulations.32

IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run33

with the moving-mesh code AREPO. The simulation solves coupled evolution of dark matter, cosmic34

gas, stars, supermassive black holes, starting with the highest redshift of 127 to 0, i.e. the present day.35
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2 Data36

2.1 The Chosen Data37

As mentioned in the project proposal, the data used for the model is from the Illustris-TNG simulation.38

However, the data we were interested in was TNG-100, which was around 2TB in size, hence more39

rigorous to work with. Hence, we decided to write and test the code using the TNG50-4 simulation40

data, which is a low resolution simulation, but has the same data format as the high resolution41

TNG-100. Once the code is complete, we shall download the TNG-100 files, and run it using those42

files to get our model.43

2.2 Data Extraction and Construction44

Using an authentic API key, the data was extracted from the official website of the Illustris-TNG45

simulations. The way to go ahead with the procedure would be, to track the particles in the simulation46

at each redshift (point in time) and maintain a label for them. At each redshift, a friends-of-friends47

and subfind algorithm shall also be used to identify the halos and subhalos to which the particles48

belong. AS we keep track of them, in the present day data file, we would know the assembly history49

of the particle, hence be able to jusdge if it contributes to the in-situ mass or ex-situ mass of the galxy.50

Since this would have been a more cumbersome method, we used an already existing catalogue which51

does all this, and gives us the final labels of the particles. Therefore, the data we are working with are:52

the snapshots, the group catalogues, the offsets and the stellar assembly catalogues of the simulation.53

To construct our data, we first work with the stellar assembly catalogue. After reading the file and54

sorting for redshift =0, we apply our first constraint, i.e. the mass of the central galaxies of the halos55

should be greater than 1010.16MSun. This constrain exists, because (i) The resolution limit for the56

TNG data is around 7.46× 108MSun and (ii) the accuracy of morphology, rotation, and shape of the57

galaxies of interest deters below 109MSun. Hence, making us choose the galaxies whose mass is58

not less than 1010MSun/h. The second constraint had to be to check if the simulation gives faithful59

mock images for the chosen subhalos. In the context of TNG simulation, a faithful mock image refers60

to a computer-generated image or simulation that accurately represents a real-world phenomenon or61

system. There will be a need of SKIRT imaging data for the same. However, this was not possible to62

do here, as the data was low resolution. The third constraint was to check if the central galaxy of the63

halo is at least 0.5 magnitudes brighter than the satellite galaxies. However, this can be skipped, as64

this constraint does not have any manor impact on the model.65

As we sort the stellar assembly data, we store the index of the subhalos (the subhalo ids). These66

ids are then used to get the galaxy features from the snapshot, group catalogue and offset files. The67

columns are then concatenated, and used for the model training.68

3 Halo and Galaxy features used69

We briefly describe the halo and galaxy features present in the data.70

1. SubhaloBHMass: the estimated mass of a black hole that resides within a subhalo.71

2. SubhaloGasMetalFractions: fraction of metals present in the gas component of a subhalo.72

(For carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, calcium, iron, and nickel)73

3. SubhaloGasMetalFractionsHalfRad: The fraction of metals present in the gas component74

of a subhalo within half of the subhalo’s maximum circular velocity radius. (For carbon,75

nitrogen, oxygen, neon, magnesium, silicon, sulfur, calcium, iron, and nickel)76

4. SubhaloGasMetalFractionsSfr: The fraction of metals present in the gas component of a77

subhalo that is actively forming stars. (For carbon, nitrogen, oxygen, neon, magnesium,78

silicon, sulfur, calcium, iron, and nickel)79

5. SubhaloGasMetallicity: The metallicity of the gas component of a subhalo, defined as the80

fraction of the gas mass that is composed of heavy elements.81

6. SubhaloGasMetallicityHalfRad: The metallicity of the gas component of a subhalo within82

half of the subhalo’s maximum circular velocity radius.83

7. SubhaloLen: The number of particles used to represent a subhalo in the simulation.84
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8. SubhaloMass: The total mass of a subhalo, including all components such as gas, stars, and85

dark matter.86

9. SubhaloMassInHalfRad: The total mass of a subhalo within half of the subhalo’s maximum87

circular velocity radius.88

10. SubhaloMassInRad: The total mass of a subhalo within the subhalo’s maximum circular89

velocity radius.90

11. SubhaloSFRinHalfRad: The star formation rate within half of the subhalo’s maximum91

circular velocity radius.92

12. SubhaloSFRinRad: The star formation rate within the subhalo’s maximum circular velocity93

radius.94

13. SubhaloSpin: The angular momentum of a subhalo, which can affect its morphology and95

evolution.96

14. SubhaloStarMetalFractions: The fraction of metals present in the star component of a97

subhalo. (For carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, calcium, iron, and98

nickel)99

15. SubhaloStarMetalFractionsHalfRad: The fraction of metals present in the star component100

of a subhalo within half of the subhalo’s maximum circular velocity radius. (For carbon,101

nitrogen, oxygen, neon, magnesium, silicon, sulfur, calcium, iron, and nickel)102

16. SubhaloStarMetallicity: The metallicity of the star component of a subhalo, defined as the103

fraction of the star mass that is composed of heavy elements.104

17. SubhaloStarMetallicityHalfRad: The metallicity of the star component of a subhalo within105

half of the subhalo’s maximum circular velocity radius.106

18. SubhaloStellarPhotometrics: The properties of the stellar population in a subhalo, including107

luminosities and colors. (For U, B, V, K, g, r, i, z)108

19. SubhaloVelDisp: The velocity dispersion of the stars in a subhalo.109

20. SubhaloWindMass: The mass of gas that has been ejected from a subhalo due to feedback110

from star formation or black hole activity.111

21. SubhaloHalfmassRad: The radius within which half of the total mass of a subhalo is112

contained.113

22. SubhaloSFR: The star formation rate of a subhalo, measured in units of solar masses per114

year. This is the rate at which gas is being converted into stars within the subhalo.115

The features related to satellite galaxies are not used, as the satellite galaxies mass limit is below the116

resolution of the simulation, and hence will not be a good testing criterion. Also, most of the galaxies117

studied do not have satellite galaxies above the range of 108MSun.118

4 Machine Learning Methodology119

4.1 Decision Trees120

Decision trees, a type of machine learning algorithm, is used for classification and regression tasks.121

They work by recursively splitting the data-set into subsets based on the most informative feature,122

thus creating a tree-like structure. Decision trees can handle both categorical and numerical data,123

however, since we need numerical answers, we focus on the regression type trees. They are easy to124

interpret and visualize, and can handle noisy data.125

4.2 Random Forest126

Random forest, that utilizes decision trees for classification and regression, is an ensemble learning127

method. It works by constructing multiple decision trees using random subsets of the training data128

and features, and combining their predictions through averaging or voting. This helps in reducing129

over-fitting, increasing accuracy, and provides measures of feature importance. Random forest has130

several hyper-parameters such as the number of trees, the size of the subsets, and the depth of the131

trees. These can be tuned using cross-validation to find the optimal combination for the specific132

problem.133
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4.3 Description of the Model134

We used RandomForestRegressor from the scikit-learn machine learning library to model the relation-135

ship between our input variables and the target variable. The random forest algorithm is an ensemble136

learning method that fits multiple decision tree models on randomly selected subsets of the data, and137

aggregates the predictions of each individual tree to improve overall predictive accuracy.138

We utilized several hyperparameters to fine-tune the performance of the random forest regressor.139

One key hyperparameter is the number of decision trees in the forest, which we set to 100. Another140

important hyperparameter is the "bootstrap" setting, which determines whether each tree is fit on a141

bootstrapped sample of the data (with replacement) or the entire dataset. In our analysis, we set the142

bootstrap parameter to "True", which enables bootstrapping.143

We also utilized the "out-of-bag" (OOB) score as a metric to evaluate the performance of our model.144

The OOB score measures the predictive accuracy of the model on data points that were not included145

in the training set for each individual tree. This provides an estimate of how well the model is likely146

to generalize to new, unseen data.147

5 Provisional Results148

As seen in the TNG50-4 data, the following are the provisional results:149

1. The subhalos that can be used in the dataset are just 265 out of 22869 total subhalos. This is150

due to the low resolution data used for the training.151

2. Checking the luminosity of the central galaxies compared to the satellite galaxies as a152

constraint, was not helpful, as it should have been.153

3. The major features that we got from the model were: SubhaloMass, SubhaloMassInHalfRad,154

SubhaloBHMass, SubhaloStarMetalFractions, SubhaloStarMetallicity155

Some of the relations observed in the model are expressed as a plot in Fig 1.156

6 Future Plans157

As regards our future plans in the project, we are interested in carrying out the same procedure in158

TNG300 and TNG50 high resolution data, as mentioned during proposal. We would focus on the159

specific properties in both the data, one has better statistical properties, while the other has better160

structural properties. Also, we will apply mass limits in the data set to split it into 2, which we could161

not apply in this due to low data. We will also be applying the SKIRT Imaging data constraints, and162

additionally focussing on the observable features alone. Lastly, our highly ambitious goal of trying a163

similar procedure for black hole systems also remains.164

Figure 1: The Ex-Situ Stellar mass fraction’s relationship with the Total Stellar mass of the subhalo
(i) Log-Log Function (ii) Without Log
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