
Improvement on the Quaternion-based models:
extension to larger datasets and Batch Normalization

Adhilsha A & Aritra Mukhopadhyay
Department of Computer Sciences

National Institute of Science Education and Research Bhubaneswar
P.O. Jatni, Khurda 752050, Odisha, India

adhilsha@niser.ac.in & aritra.mukhopadhyay@niser.ac.in

Abstract

Quaternion neural networks are particularly well-suited for image processing tasks
because they can naturally represent complex color information in a compact and
efficient way, making them a promising candidate for a variety of computer vi-
sion applications. The library used for such, contain experimental implementations
which we are trying improve along with the implementation of Batch Normaliza-
tion for larger datasets. As of now, we were able to significantly increase the speed
of Quaternion model training by improving forward propagation without loss of
accuracy.

1 Introduction

The baseline models in this project are all Neural Networks (NNs). Neural networks are machine
learning algorithms inspired by the human brain that recognize patterns and relationships in data for
making predictions or decisions. In this project, we will be more concerned with forward propagation,
backward propagation and batch normalization (See Appendix) within neural networks to improve
its speed.

We also have Convolutional Neural Networks (CNNs) are neural networks specifically designed
for image recognition and computer vision tasks. They consist of multiple convolutional layers,
along with pooling layers, activation functions, and fully connected layers (See Appendix). CNNs
are capable of recognizing and classifying objects with a high degree of accuracy, widely used in
applications such as self-driving cars, facial recognition, and medical imaging.

Another important factor in our goal is Quaternions, a four-dimensional extension of complex
numbers, represented by a vector of the form q = a+ bi+ cj + dk. Quaternion models are models
that use Quaternions as a mathematical representation. The most important characteristic of such a
model is the reduction in the weights by 4 times although the amount of calculations remains the
same (See Appendix). Quaternion neural networks are particularly well-suited for image processing
tasks because they can naturally represent complex colour information in a compact and efficient
way. This makes them a promising approach for a variety of computer vision applications.

2 Previous works

Our work is based on the work done by Sahel Mohammad Iqbal and Subhankar Mishra [1] on
Pruning of Quaternion models along the lines of Lottery Ticket hypothesis. Their work showed
that, in situations where resources are severely limited, a sparse Quaternion network may be a more
suitable option than a sparse real model with similar structure. Pruning is a technique used in deep
neural network training to minimize resource requirements by removing redundant weights. The

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Real and Quaternion model accuracy
vs epochs for LeNet-300-100 on MNIST

Figure 2: Real3, Real4 and Quaternion model
accuracy vs epochs for Conv2 on CIFAR-10

Figure 3: Real3, Real4 and Quaternion model
accuracy vs epochs for Conv4 on CIFAR-10

Figure 4: Real3, Real4 and Quaternion model
accuracy vs epochs for Conv6 on CIFAR-10

Lottery Ticket Hypothesis suggests that there exists a smaller subnetwork that can perform as well
as the full network. This subnetwork can be identified by pruning unimportant weights during the
training process without affecting the performance of the overall model.

Furthermore, for machine learning tasks that have multi-dimensional input data, using more complex
data embeddings such as Quaternions or complex numbers can reduce the number of parameters
while maintaining precision. Their work showed that, in situations where resources are severely
limited, a sparse Quaternion network may be a more suitable option than a sparse real model with
similar structure.

3 Datasets and Baseline models

Till now, we have used leNet-300-100 model on the MNIST dataset and 3 sorts of CNN models
(Conv2, Conv4 and Conv6) on the CIFAR-10 dataset. (see appendix A.4). As for the models, we
have LeNet-300-100 neural network for image classification tasks. It has three fully connected layers
(input_nodes-300-100-output_nodes) with ReLU activation function. The model takes in a flattened
28x28 image and outputs a tensor of size 10 representing the probability distribution over 10 digit
classes.

The Conv2, Conv4, and Conv6 models are convolutional neural networks designed for image
classification tasks. They consist of multiple convolutional layers with ReLU activation functions,
followed by max pooling to downsample the feature maps and reduce the spatial dimensions. The
output of the convolutional layers is then passed through fully connected layers with ReLU activations
before a final output layer with a specified number of classes or output channels. The main differences
between these models lie in the number of convolutional layers, output channels, and size of kernels
used (See Appendix A.5).

2



Figure 5: forward propagation speed vs batch
size for LeNet model before code change

Figure 6: forward propagation speed vs batch
size for LeNet model after code change

We trained the LeNet-300-100 model with MNIST and the CNNs with CIFAR-10. We used the
hyperparameters from the original paper itself, which is batch size 60 for all models, 40 training
epochs for all models except Conv6 whereas Conv6 had 60 training epochs. The Adam optimizer
was used for all model but with different learning rates. While Conv4 and Conv6 has 0.0003 where
as Conv2 used 0.0002 and LeNet-300-100 used 0.0012 as learning rates. The accuracy versus epochs
graphs for these models are given in Figures 1-4.

The code and stored results can be found at the Github repository QuartLT23. This also includes the
experiments and results discussed further in the report.

4 Experiments

4.1 Improvement on Quaternion forward propagation

The initial observation we saw was the slow running of Quaternion models. To trace the problem, we
observed the forward and backward propagation time consumption separately for LeNet model on
MNIST and found that the forward propagation in Quaternion models was taking most of the time,
irrespective of batch size.

On further analysis, We found the three steps of forward propagation. They are:

1. building 4×4 Quaternion to real matrix (w)
2. Finding wx+ b (applying linear function)
3. typecasting the output of step 2 to a Quaternion tensor.

We checked the time taken by these three steps separately for batch size 8192. We found that step 1
took around 0.5ms, step 2 took 1ms and step 3 took the rest of the 28.5ms out of the total 30ms
taken by forward propagation. The typecasting step is taking around 95% of the time. This was
because of a line q.cpu() which was needlessly copying the x to the CPU memory (the RAM) after
every layer. Being a highly experimental part of library, we changed it to q.cuda() and got rid of the
redundant operations. This improved the speed by almost double (22.5 it/s to 57.5 it/s). Repeating
the batch size experiment again, we got the following before and after the change results as given in
Figures 5 and 6.

4.2 Batch size experiment on Conv6 with CIFAR-10

We ran the Conv6 model with CIFAR-10 dataset for batch sizes ranging from 25 to 213 with 80
training epochs and other hyper parameters same. Here, the forward propagation time comparison,
backward propagation time comparison and accuracy comparison across varying batch sizes are given
in Figures 7, 8 and 9. The forward propagation increases like a step function about which we still yet
to uncover more info on. The backward propagation of Quaternion models outperformed the real
models and this shows that the the reason of Quaternion model’s slowness is solely from the forward
propagation and improving it will bring about better speeds.

3

https://github.com/smlab-niser/quatLT23


Figure 7: Real and Quaternion model forward
propagation speed vs batch size for Conv6 model

Figure 8: Real and Quaternion model backward
propagation speed vs batch size for Conv6 model

Figure 9: Real and Quaternion model accuracy
vs batch size for Conv6 model

Figure 10: Real and Quaternion model accuracy
vs epochs for Conv6 model, batch size 1024

Another interesting observation is the stability of accuracy across different batch sizes in Quaternion
and real models. The Quaternion has a relative stable accuracy (around 3% change across batch size)
while the real model is less stable (with a 9% change across batch size), see Figure 9.

4.3 Observation on batch size and accuracy on Conv6 Real3 and Real4

In Original work, Sahel [1] fed the RGB data as three channels and the grayscale data of the same
image as the fourth one for Quaternion model input. He was comparing this with the real model
trained on only RGBdata. This comparison showed the Quaternion model to be less accurate
than the real model. So, to have a fair comparison of models, we ran the real Conv6 model with
RGBdata+grayscale data (termed as Real4 and the former as Real3) of images and compared, then
both the models were of comparable accuracy. See Figure 4.

With an experiment of an increase in batch size to 1024, we saw the same models having a reduction
in accuracy, worse in the case of Real4. See Figure 10. Though the reduction in accuracy is as
expected, as we already saw from Krizhevsky [2014], Li et al. [2014], Keskar et al. [2016] and Hoffer
et al. [2017] as cited in [2]. the Real4 model taking worse of it was unexpected; we plan to run more
analysis on this too.

5 Further plans

Our future plans include writing the code for Batch Normalization code in Quaternion models. Along
with the implementaion of batch normalization in more complex models and larger datasets, we plan
to improve the speed of the code by possibly editing or writing alternate codes for the implemenations
inside Quaternion models.

4



References

[1] Sahel Mohammad Iqbal and Subhankar Mishra. 2023. Neural Networks at a Fraction with Pruned Quater-
nions. In 6th Joint International Conference on Data Science Management of Data (10th ACM IKDD CODS
and 28th COMAD) (CODS-COMAD 2023), January 4–7, 2023, Mumbai, India. ACM, New York, NY, USA 9
Pages. DOI:https://doi.org/10.1145/3570991.3570997

[2] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large Batch Training of Convolutional Networks. arXiv.
DOI:https://doi.org/10.48550/ARXIV.1708.03888

A Appendix

A.1 Forward propagation, Backward propagation and Batch normalization

Forward propagation in neural networks involves feeding input data through the network to obtain a
prediction, where weights and biases are adjusted during training. Backward propagation involves
calculating error and adjusting weights and biases to minimize error between predicted and actual
output.

Batch normalization is a machine learning technique that improves neural network performance and
stability by normalizing the input of each layer. It can be done by subtracting the batch mean and
dividing by the batch standard deviation to reduce the internal covariate shift. The technique can
speed up training and improve generalization performance in deep learning architectures like CNNs
and RNNs.

A.2 Convolutional layers and Pooling layers

Convolution layers are used in neural networks to detect and extract features from data such as
images. They use a filter to perform a convolution operation at each location, resulting in a feature
map that captures specific features within the input data. Convolution layers are ideal for tasks such
as image recognition and natural language processing where they can learn to detect patterns and
relationships. Pooling layers downsample feature maps in neural networks by dividing input data
into smaller regions and taking the maximum, minimum, or average value within each region. This
reduces feature map size, preserves important information, and commonly used in convolutional
neural networks to improve efficiency and reduce overfitting.

A.3 Quaternions and Quaternion based models

Quaternions are a four-dimensional extension of complex numbers, represented by a vector of the
form:

q = a+ bi+ cj + dk

where a, b, c, and d are real numbers, and i, j, and k are imaginary units that satisfy the following
rules:

i2 = j2 = k2 = ijk = −1

Quaternion models are models that use Quaternions as a mathematical representation. The most
important characteristic of such a model is the reduction in the weights by 4 times although the
amount of calculations remains the same (See Appendix). Quaternion neural networks are particularly
well-suited for image processing tasks because they can naturally represent complex color information
in a compact and efficient way. This makes them a promising approach for a variety of computer
vision applications.

The Hamilton product of two Quaternions is defined as:

q1q2 = (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i

5

https://doi.org/10.1145/3570991.3570997
https://doi.org/10.48550/ARXIV.1708.03888


+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k

where q1 = a1 + b1i+ c1j + d1k and q2 = a2 + b2i+ c2j + d2k.

The 4x4 real representation matrix of a Quaternion is:

q =

a −b −c −d
b a −d c
c d a −b
d −c b a


Traditional neural networks are built with real numbers, where each neuron is a real number and each
weight is a real number. For such networks, p× n weights are required in each layer (where p is the
number of weights in the previous layer and n is the number of weights in the next layer). However,
in Quaternion networks, every four neurons in a layer can be replaced with one Quaternion to create
an equally complex network. Therefore, only p

4 ×
n
4 weights are needed. It should be noted that all of

these weights must be Quaternions rather than real numbers. To store a Quaternion, four numbers are
required, resulting in a total number of weights of 4× p

4 × n
4 = p×n

4 . Thus, using Quaternions, we
achieve a four-fold reduction in weight. An important point to be noted is that, although the number
of weights get reduced by 4, the number of calculation during training remains constant.

A.4 Datasets and models

The MNIST dataset comprises 70,000 grayscale images of handwritten digits (0-9), each of size
28x28 pixels, and is a widely used benchmark dataset in machine learning and computer vision
research. The dataset is divided into a training set of 60,000 images and a test set of 10,000 images,
and its goal is to train a machine learning algorithm to correctly classify digits based on their pixel
values.

The CIFAR-10 dataset is a widely used benchmark dataset in computer vision research, consisting of
60,000 color images of size 32x32 pixels, each belonging to one of ten classes. It is used to evaluate
the performance of various image classification algorithms, including CNNs, and is divided into a
training set of 50,000 images and a test set of 10,000 images.

As for the models, we have LeNet-300-100 neural network for image classification tasks. It has three
fully connected layers (input_nodes-300-100-output_nodes) with ReLU activation function. The
model takes in a flattened 28x28 image and outputs a tensor of size 10 representing the probability
distribution over 10 digit classes.

The Conv2, Conv4, and Conv6 models are convolutional neural networks designed for image
classification tasks. They consist of multiple convolutional layers with ReLU activation functions,
followed by max pooling to downsample the feature maps and reduce the spatial dimensions. The
output of the convolutional layers is then passed through fully connected layers with ReLU activations
before a final output layer with a specified number of classes or output channels. The main differences
between these models lie in the number of convolutional layers, output channels, and size of kernels
used. Overall, these models are effective in extracting meaningful features from images and achieving
high accuracy in classification tasks.

6


	Introduction
	Previous works
	Datasets and Baseline models
	Experiments
	Improvement on Quaternion forward propagation
	Batch size experiment on Conv6 with CIFAR-10
	Observation on batch size and accuracy on Conv6 Real3 and Real4

	Further plans
	Appendix
	Forward propagation, Backward propagation and Batch normalization
	Convolutional layers and Pooling layers
	Quaternions and Quaternion based models
	Datasets and models


