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Abstract

Locust swarming is a behavioural phase transition problem in ecology where the1

population can be pushed from one alternative stable state to another depending2

upon the population density. It hovers between swarming and recession. The way3

this phase transition interacts with its environmental factors is a critical problem to4

understand as locust swarms decimate crops and pastures in a very short amount of5

time. This further leads to famines in developing countries and affects the livelihood6

of local people. In this paper, we implement baseline models to understand locust7

swarming and the different environmental variables that impact it. We will further8

extrapolate it to Latin American, India and other countries where there there is a9

gap of models predicting the locust swarms. Our work will provide insights into10

the the ecology of locust swarms and generalisability of machine learning models.11

1 Introduction12

Ecosystems are complex and dynamic systems consisting of both abiotic and biotic parameters that13

determine its state. Certain ecosystems can undergo rapid change from one state to another. These14

are called catastrophic regime shifts that has multiple alternative stable states. Empirically, it has15

been observed that a particular stable state is observed until its "tipping point" is reached and then an16

alternative stable state is observed. A few examples of rapidly-changing ecological systems are coral17

bleaching, desertification and locust swarming.18

Locusts are found in two stable states - one is solitary where they don’t interact with each other and19

the other is the gregarious state where due to certain environmental conditions, individual locust20

populations aggregate together to produce huge locust swarms. The tipping point for this system is21

the critical population density that decides the state of the system. Many mechanistic models based22

on statistical physics have been worked upon especially related to collective behaviour[1]. But these23

models are not very helpful to predict the swarming. Machine learning as a tool can be impactful24

to understand locust swarming from a predictive and theoretical background. This is possible since25

although the system is dependent upon the tipping point, there are indirect abiotic factors deciding26

the tipping point. Some of them are the surrounding soil moisture where the locust eggs are present27

or the temperature of the area where adult locusts are present that can fasten up their metabolism and28

so on.29

Recently, machine learning models have been used to predict locust swarming with high accuracy30

and precision.[6, 9] Some of the features that have been used are: soil moisture, precipitation, average31

temperature, soil type and so on. Recent works have been tabulated in Table 1.32

2 Related Works33

Abiotic parameters as elucidated in the table have been used in the different predictive models.34

Locust swarming is associated with arid regions and sudden changes in precipitation. As for biotic35

parameters, hopper presence/absence have been used as the target feature. The life cycle of locusts36

consists of three stages: egg, nymph (also known as hopper) and adult. Both nymph and adult stages37

are capable of producing swarms, albeit the nymph swarms are called bands and are smaller than38

swarms. These bands are also the cause of crop loss and habitat destruction. The tipping point of39
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Table 1: Related works

Papers Countries used Features used
Prediction of breeding re-
gions for the Desert Locust
Schistocerca Gregaria in East
Africa.[5]

Morocco, Mauritania and
Saudi Arabia for training and
Kenya and Sudan for testing

Temperature, rainfall, soil
moisture, and sand content for
prediction of Hoppers.

Prediction of desert locust
breeding areas using machine
learning methods and smos
(MIR_SMNRT2) near real
time product. [4]

30 countries Soil moisture for prediction of
nymph population

Modelling Desert Locust pres-
ences using 32-year soil mois-
ture data on a large-scale.[3]

30 countries Soil moisture for prediction of
nymph population.

Machine learning approach to
locate desert locust breeding
areas based on ESA CCI soil
moisture [2]

Mauritania Soil moisture for prediction of
nymph populations

On pseudo-absence generation
and machine learning for lo-
cust breeding ground predic-
tion in Africa [10]

African countries Soil moisture (at different
depths), average temperature,
wind, rainfall and quality of
air.*

locust swarms is dependent upon the number of nymph locusts that are turned into swarming adults.40

Most studies have used this as the target label from a preventative aspect although the presence of41

eggs and adult locusts can also be used.[7]42

2.1 Methodology followed43

2.1.1 Pre-processing and Feature Engineering44

Time series data from 1985-2021 is collected from Food and Agriculture Organization’s locust45

swarming dataset comprising the hopper absence or presence at different coordinates all over the46

world through its global Desert Locust Information Service. Considering that we are trying to predict47

the hopper population, the time series data from 95 days prior from the time when the presence data48

was collected is scraped for different environmental variables and different statistical descriptions49

(mean, median, maximum, minimum) can be used to engineer new features. 95 days is the maximum50

amount of number at which eggs are laid and develop into larvae to produce hoppers. From -95 to 0,51

further buckets are made of different time intervals such as 6, 12, 16 and so on. Over this interval, the52

different statistical features are calculated. For example, in a 6-day bucket, you may have a feature53

such as Tavg _95-89 which is an average of the temperatures between Day 95 and Day 89. It has54

been observed that the smaller this interval is, the higher the accuracy of the model as detailed by55

Gómez et al. [3]56

For all these intervals, for each X and Y coordinate the temperature, precipitation, soil moisture57

and other environmental variables are scraped from various meteorological satellite datasets such as58

GLDAS Noah Land Surface Model (0.25 x 0.25), LANDSAT, etc.59

These features undergo suitable pre-processing steps such as centering and scaling as the ranges for60

different features are different. The model is trained on one set of countries and tested on another set61

of countries.62
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2.2 Pseudo-generation of absence points63

It’s difficult to ascertain the absence of a species in an area during ecological surveys. To deal with64

this, researchers generate pseudo-absence points near the presence zones. There are a number of65

ways to perform this as reviewed in a paper (Yusuf et al., 2022). Two popular methods are to either66

randomly provide absence points or through environmental profiling where environmental variables67

of the nearby regions are also taken into consideration. The absence points are important for feeding68

datasets in machine learning models so that there is not an overrepresentation of one class in the data.69

Although most machine learning models perform better on datasets with absence points with low70

bias, there are also machine-learning based species distribution models (SDM) that use presence-only71

data. One such popular SDM model is MaxEnt. [8] There’s a caveat though - MaxEnt still generates72

"background" points but it doesn’t associate these points with the absence of the species. MaxEnt73

aims to map the optimal environmental parameters with the presence of the species.74

2.3 Models used and their results75

Different machine learning models such as logistic regression, k-Nearest Neighbors, MaxEnt, XG-76

Boost have been used in the literature. Depending on the countries and features used to test their77

model on, they get varied results. Environmental variables such as soil moisture is a good predictor78

even when it is used without any other variable. Their results have been tabulated in Table- 3.79

Table 3: Comparison of different models

Statistic Logistic k-NN Random Forest MaxEnt
Accuracy 0.85 0.81 0.78 0.81

3 Baseline algorithms80

The baseline algorithms to be implemented are logistic regression and random forest.81

4 Experiments82

4.1 Curation of dataset83

For the dataset, we have used the pre-processing pipeline available from previous works to get the84

data of African countries from Food and Agricultural Organisation (FAO)’s hopper observation data.85

All the inexact entries were removed. The X and Y coordinates from this data were used to fetch86

the data from GLDAS Noah Land Surface Model and SoilGrids for 95 days prior the presence data87

was collected as performed by Yusuf et al. [10]. Further bucketizing based on time interval of 6 days88

created total 1168 features. The dataset information is shown in Table- 5.89

For training and testing, the entire dataset of all the different countries and timeline was split into two90

subsets with test size chosen to be 0.34.91

Table 5: Dataset

Rows Features Temporal Non-temporal
31251 1168 Average temperature,

wind speed, soil mois-
ture, precipitation, hu-
midity of air

Sand content
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4.2 Parameters92

Two baselines were chosen to be implemented – regularised logistic regression with the default93

L2 penalty term and random forest. Other than the features that have been described above, the94

hyperparameters of the models were tuned. For logistic regression, the number of iterations were95

tuned and for random forest, the number of trees were tuned. The related codes can be found in the96

following github repository.97

4.3 Results98

Metrics such as Cohen’s Kappa, accuracy, precision and recall for the classification algorithms is99

tabulated in Table- 7. The ROC curve for both is plotted in Figure- 1.100

Figure 1: Figure 1: ROC curve of logistic regression and random forest respectively

Table 7: Classification metrics

Algorithm Accuracy Precision Recall Kappa-score
Logistic regression 0.885 0.894 0.95 0.71
Random forest 0.894 0.887 0.972 0.73

5 Plan101

Now that we have a baseline model for the African countries, we plan to pre-process the entire102

data of FAO’s hopper observation data in different continents. This has been performed for the soil103

moisture feature to some extent but we plan to perform it for all the others. Once we have a model104

based on this dataset, we will predict the absence or presence of locust in different cities in South105

America, Australia and so on. This will help us understand the generalizability of machine learning106

models for different swarming species with different geographical limitations but similar behavioural107

characteristics such as the formation of locust swarms.108

6 Limitations109

Addition of pseudo-absence points may be creating a bias while prediction – considering that the110

test data has absence data points that has been generated so the high accuracy and precision of the111

baseline models is also due to the correct prediction of those points. Ecologically, it is very hard to112

conclude that. But since most of the classification algorithms require a similar distribution for both113

classes in the dataset that it is training on, we still need to generate these points. For this reason, we114

need both pseudo-absence and presence-only models for any predictive analysis. Thus, we need to115

implement MaxEnt species distribution model as well.116
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