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Updates after midway

* Tried a regression CNN model with limited success

* Ran the Ising model simulations with multiple coupling constant values
and checked how thermodynamic variables vary with temperature for the
snapshots — since the critical temperature varies, could not run any
models on these datasets

* Ran the Ising model simulations across various lattice sizes — the
regression model doesn’t directly seem to recognise a phase transition

* Not able to obtain weight matrices (analogous to the order parameter)
for each set of simulations while using regression

* Resorted to using testing loss as a new order parameter



New datasets

* In total, 20k snapshots each were produced for 4 different coupling
constants (J] = 0.5, 1, 2, 5) in case of 20*20 lattices

* 20k snapshots were produced for 20*20, 50*50, and 100*100 lattices
* In these 6 datasets, data was taken from T = 0.05 to T = 4.00

* In order to check if the critical point (T,) was still present, magnetisation
vs temperature and energy vs temperature plots were prepared



Normalized Energy

New datasets
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Normalized Magnetization

New datasets
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Regression algorithm
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* Our current regression algorithm does not
perform very well due to having a rather low
number of parameters

0.0

* Upper right — loss for training 1.=20
* Lower right — loss for training 1.=50

* In the Tanaka (2017) papet, the authors actually =

performed classification using DenseNet

(dividing the dataset using each 3 (inverse of T)
as a class), and then did a best fit of the model “
weights for the tan hyperbolic function that
relates magnetism to temperature
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Regression algorithm

* Loss vs epochs 1s seen to saturate fairly quickly for the model

e Mean absolute error was seen to reach close to the resolution at which
the snapshots were taken (0.05) during training, which implies that the
algorithm was overtitting

* Another sign of overfitting that we observed — fluctuation in validation
loss while training loss continuous to drop



Regression algorithm

* Sequential CNN on both 20*20 and 50*50 datasets

* Not clear where critical point is present
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An alternate order parameter

* One can make use of loss as an order parameter

* For the Ising model, it 1s known that entropy 1s a derivative of the free energy of the
system

S = —9F/aT

* Here, the free energy 1s given as:

F=—kTin(Z)
where, T 1s the temperature and Z 1s the partition function (sum over states)
* It can be shown that:

S=k Z piln(p;)
[



An alternate order parameter

* In our case, where we make use ot the cross-entropy loss function in
training our classifier, we have the loss calculated as

n
Leg = Z y; - log(yi)
j=1

here, y* refers to the true probability distribution
and y refers to the predicted class distribution

* We now examine how the loss varies across the critical polnt for a test set



Misclassification loss

* For both L=20 (left) and L.=50 (right) lattices, we observed that the
training loss and accuracy decreased and increased respectively, but the
validation trends seem to indicate undertraining
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Misclassification loss

* We produced two test sets:

* For L = 20 : 5k snapshots for T = 2.01 to T = 2.50 with an interval of 0.01, with
100 snapshots for each of the temperatures

* For L. = 50 : 2.5k snapshots for T = 2.01 to T = 2.50 with an interval of 0.01,
with 50 snapshots for each of the temperatures

* The model was evaluated for each temperature in this interval to observe
the variation in cross-entropy loss with temperature



Misclassification loss

* Peaks were observed near the critical point in both the cases

* Qualitatively, it can be said that cross-entropy loss can act as an order

par ameter
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Further plans

* To run the model for larger lattice sizes to confirm that the observed
trends in our order parameter can be extended for lattice sizes

* To obtain the weight matrices for various temperatures using a
classification algorithm as seen in Tanaka and Tomiya (2017) atter clearing
up bugs faced while running the algorithm

* Repeating the above for multiple lattice sizes and for longer range
interactions



Path to publication

* Begegnungszone: Statistical Physics and Machine Learning (2023) :
Deadline — May 15 (30 days from today)

* [CCPA 2023 — May 1 (14 days from today)
* I[CSPM 2023 — May 1 (14 days from today)
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