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Abstract

With the advancements of observation techniques, many Earth-like exoplanets have
been discovered. But, these techniques can only probe exoplanetary atmospheres
and thus, the mechanisms of interior are difficult to quantify. Studying time-
evolution of interiors of these exoplanets might give us a better understanding of
how planets like Earth formed. We present a machine-learning based approach to
investigate and predict time-evolution of interiors of rocky exoplanets using neural
networks (NN).

1 Introduction

The past two decades have proved to be the heyday for exoplanetary science. Thousands of planets
have been discovered and characterized, and now the focus is shifting towards habitability and life.
Most exoplanets are too far from us and any direct mission is unfeasible in human lifetime. Thus,
one can only analyse their atmospheric spectrum. However, the atmosphere is always in interaction
with the interior. As the interior cannot be probed with any means as of now, we are left with
analytical models to predict how interiors may affect the atmospheres. There are two approaches
for developing models to study exoplanetary interiors. The first concerns with the prediction of the
interior structure, that is, composition and radial variation of the interior and then studying how
it interacts with the atmosphere. This approach has been investigated the most as of now (Bower
et al. [2018], Lorenzo [2018], Suissa et al. [2018], Wang et al. [2019], Huang et al. [2022] and many
more). The second approach involves looking at the big picture, i.e., the time-evolution of the interior
structure. This approach is more comprehensive, and can provide insight how planets like ours, came
into being. Very few analytical models exist which simulate time-evolution of exoplanetary interiors.
Furthermore, they are limited in their working; with multiple factors coming into play, the complexity
also increases.

In recent times, machine-learning based approaches are being used as substitute for analytical models
as they are often less computationally intensive and might go beyond limitations. Recently, Zhao and
Ni [2021, 2022] used mixture density networks (MDNs) to predict interior structures of rocky and
gaseous exoplanets. This involved using analytical models of Lorenzo [2018] for rocky exoplanets
and adapted equations of hydrostatic equilibrium and rotation for gaseous planets to train the MDN.

In this paper, we have tried to go with a similar approach for modeling the interior evolution of
exoplanets. Here we describe a machine-learning surrogate model for interior evolution using the
code package VPLanet first described in Barnes et al. [2020].
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2 Exoplanet Interiors and VPLanet

VPLanet is a software package developed to simulate the fundamental aspects of planetary evolution
over Gyr timescales, focusing on Earth-like habitable worlds (Barnes et al. [2020]). It can model the
atmospheric, internal, orbital, rotational, stellar, and galactic processes and mimic existing results. In
this work, we use the MagmOc, an interior evolution module of VPLanet which uses simple physics
to model the evolution of a solar system like rocky exoplanet right from its formation to atmospheric
desiccation. This module is based on the previous work by Schaefer et al. [2016] and Elkins-Tanton
[2008], and includes various parameters such as stellar heat, radioactive decay, and tidal interactions.

The simulation starts with a completely molten mantle that solidifies with time, causing change
in various physical properties such as mantle potential temperature, water content in melt and
atmosphere, escape of gases, etc. MagmOc is coupled with the STELLAR code of VPLanet which
couples the stellar evolution too with the planet evolution. The code computes the evolution of
the mantle potential temperature, solidification radius, water mass in the solid, magma ocean and
atmosphere, oxygen mass in the solid, magma ocean and atmosphere, atmospheric pressure due to
H2O and O2, Mass fraction of FeO and Fe2O3 in the magma ocean, atmospheric net flux and the tidal
and radiogenic heat sources. A typical run for the planet TOI776 b is shown in figure 1.

Figure 1: VPLanet simulation for TOI776 b, a super earth planet with mass about 4 times of Earth
and radius of 1.85 times of earth at a initial water mass of 10 TO. The figure shows how various
properties of the planet must have evolved till the desiccation of the panet’s atmosphere.

The code can run the simulation till complete desiccation of the atmosphere or till the planet reaches
habitable zone. However, it takes several minutes to run till the desiccation, and sometimes hours to
simulate till the habitable zone, especially when the proportion of water is high or the planet is far
from the host star. In these cases, the output file becomes large in size. We aim to produce a surrogate
model to the code using machine learning to reduce the runtime of the models.
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3 Neural Networks

Neural networks are a class of machine learning algorithms inspired by the human brain, designed
to solve a variety of complex problems. They consist of interconnected layers of artificial neurons
where each neuron receives input from one or more neurons in the previous layer, and produces an
output that is transmitted to one or more neurons in the next layer. By adjusting the strength of these
connections, the neural network can learn to recognise patterns in the input data and make predictions
or classifications based on those patterns.

Multi-layer perceptron (MLP) is a type of neural network used for supervised learning. It is composed
of input, hidden, and output layers of nodes, and each node is connected to every node in the next
layer. The network uses weights and biases to adjust the strengths of connections between nodes,
which are updated during training using an optimization algorithms. The main feature of using MLP
in our model is that it can handle both linear and nonlinear relationships between inputs and outputs,
making it a powerful tool for our work.

4 Implementation of the model

4.1 Dataset

Instead of using all output parameters of MagmOc, we selected five which are the most fundamental
to govern the evolution of the system, viz., the mass of the star ms (in Msun units), the star-planet
distance a (semi major axis of the orbit in AU), mass of the planet mp (in Mearth units), radius of the
planet rp (in Rearth units), and the initial water content on the magma ocean mw (in TO= terrestrial
ocean units, 1TO=1.39×1021 kg). Note that rp was calculated using values of mp at constant density
of 4000 kgm−3. The density of the magma ocean melt is kept constant at a density of 4000 kgm−3.

The complete dataset consists of three parts, first part based on the TRAPPIST planetary system (ms =
{0.1, 0.2}; a = {0.01, 0.03, 0.06};mp = (0.5, 1, . . . 3.5, 4); rp, and mw = {1.0, 2.0}), second part
based on our solar system (ms = {0.8, 1.0, 1.2}; a = {0.1, 0.5, 1.0};mp = (0.5, 1, . . . 3.5, 4); rp,
and mw = {0.5, 1.0, 2.0}), and third part covers the intermediate values so that our model can be
trained on most of the permutations to model Earth-sized exoplanets that can potentially host life.

The output of the simulation is stored in arrays containing the evolution of the parameters in each row
in two separate text files for both the evolution of the star and the planet. We split the data randomly
in the ratio of 80:20 for training:testing data.

4.2 Methodology

We started by training our datasets with a three hidden-layer MLP model from sklearn (Pedregosa
et al. [2011]). The model contains 16 nodes in each layer. The input parameters include the five
parameters mentioned in section 4.1 and an additional property whose evolution in the next step has
to be evaluated. The activation function used in the model is relu with the adam optimizer. With a
maximum iterations of 10000, the code optimizes for the given set of input parameters in few seconds.
The code can be found at our GitHub repository.

We ran our model on the first dataset for trial basis as this was our smallest dataset in terms of size.
Since each successive row of the output files represents a time-series evolution of the fate of planet,
MLP was used to predict the second row of the evolution series given the five input parameters and
the first row of the time-series (which is first 1000 years of evolution).

We train the model on to predict six planetary properties: (1) mantle potential temperature, (2) Net
flux coming out of the atmosphere, (3) Pressure of water in the atmosphere, (4) mass of water in the
magma ocean and the atmosphere combined, (5) mass of O2 in the magma ocean and the atmosphere
combined, and (6) the mass of H2 escaping into space. The results are shown in figure 2.

When we trained the model to predict the 11th row given the 10th row, the accuracy improved
significantly as shown in figure 3. We see that in figure 2, the accuracy of some of the properties is
negative, indicating imperfect correlation between training and test data. However, in figure 3, we
get a better correlation and higher accuracy solution. We claim that this behaviour occurs because
initially, the variation in the evolving parameters is not effective due to which the model is not able to
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Figure 2: Loss function vs iterations of various output parameters when trained on 2nd row

correctly predict the output. However, when it is trained on the later data, the variation in most of the
parameters is at the peak, and hence the model gives a good output.

We also tried to apply RNN and LSTM as part of our baselines, but the structure of our data limited
us as RNN are more commonly used for test and image data. However, we plan to explore RNN
more efficiently in the next half of the semester.

Figure 3: Loss function vs iterations of various output parameters when trained on 11th row

5 Future works

The complete plan is to develop a model that gets the five input parameters and predict the evolution
over the entire timescale of the planet. For this, we plan to train the model using MLP to predict the
first few rows and proceed with RNN thereafter. This is because the RNN consumes more memory
and lacks accuracy for uncertain data like ours. Moreover, as this is a time-series data, we have an
extra component to take care while training the model.

In the second half of the semester, we plan to optimize all the parameters for the first row with
increased accuracy using MLP and RNN for the entire dataset. We will also look for the possibility
of exploring other NN algorithms if required. The next step would be to apply the complete model
on dataset (3) and achieve higher accuracy. Thereafter we may explore for a more detailed dataset
varying more input parameters (that have been fixed to Earth-like values presently).
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