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INTRODUCTION

▶ Graphical Neural Networks (GNNs) can be simply defined as topologies of neural networks
that operate on graphs

▶ Research into the expressive capabilities of GNNs has primarily relied on the
Weisfeiler-Lehman (WL) test [Leman 2018]

▶ WL test is not suitable for analyzing geometric graphs that are embedded in Euclidean space
▶ Geometric WL (GWL) test explores the expressive power of geometric GNNs while accounting

for physical symmetries [Joshi et al. 2023]
Invariant layers have limited expressivity as they fail to distinguish one-hop identical
geometric graphs
Equivariant layers distinguish a larger class of graphs by propagating geometric information
beyond local neighbourhoods
Higher order tensors and scalarization enable maximally powerful geometric GNNs
GWL’s discrimination-based perspective is equivalent to universal approximation
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INTRODUCTION

Figure. Axes of geometric GNN expressivity: (1) Scalarisation body order: increasing body order of
scalarisation builds expressive local neighbourhood descriptors; (2) Tensor order: higher order spherical
tensors determine the relative orientation of neighbourhoods; and (3) Depth: deep equivariant layers
propagate geometric information beyond local neighbourhoods [Joshi et al. 2023]
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RELATED WORK

▶ Standard GNNs are at most expressive as the WL algorithm [Leman 2018, Xu et al. 2018, Morris
et al. 2018]

▶ k-WL hierarchy: generalizing the WL algorithm for classifying k-tuples of vertices [Grohe 2017]
▶ N-WL hierarchy: built on high-order subgraphs within neighborhood aggregation [Wang et al.

2023]
▶ Architectures such as TFN, GemNet, and GVP-GNN can serve as universal approximators of

continuous, G-equivariant, or G-invariant multiset functions on point clouds [Dym and Maron
2020, Villar et al. 2021, Klicpera, Becker, and Gunnemann 2021, Jing et al. 2020]
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BASELINE
WL TEST

▶ 0th iteration: WL assigns a colour c(0)i ∈ C where C is a countable space of colours. Nodes
having the same features are given the same colour.

▶ In the subsequent iterations the colours of each node are updated in the following manner:

c(t)i := HASH
(

c(t−1)
i ,

{{
c(t−1)

j | j ∈ Ni

}})
The test terminates when the partition of the nodes induced by the colours becomes stable.

▶ Given two graphs G and H, if there exists some iteration t for which{{
c(t)i | i ∈ V(G)

}}{{
c(t)i | i ∈ V(H)

}}
, then the graphs are not isomorphic. Otherwise

inconclusive.
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BASELINE
ISOMORPHISM IN GEOMETRIC GRAPHS, GWL, IGWL

Isomorphism: Two geometric graphs G and H are geometrically isomorphic if there exists an
attributed graph isomorphism b such that the geometric attributes are equivalent, up to global
group actions Qg ∈ G and

−→
t ∈ T(d)(

s(G)i ,−→v (G)
i ,−→x (G)

i

)
=

(
s(H)

b(i) ,Qg
−→v (H)

b(i) ,Qg

(−→x (H)
b(i) +

−→
t
))

for all i ∈ V(G)

In simple words, two geomtric graphs are isomorphic if the two graphs super-impose on each other
after some rotations and translations.
GWL
▶ 0th iteration

c(0)i := HASH (si) , g(0)
i :=

(
c(0)i ,−→v i

)
▶ tth iteration

g(t)
i :=

((
c(t−1)

i , g(t−1)
i

)
,
{{(

c(t−1)
j , g(t−1)

j ,−→x ij

)
| j ∈ Ni

}})
c(0)i := I-HASHt(g(t)

i )

IGWL
c(t)i := I − HASH

((
c(t−1)

i ,−→v i

)
,
{{(

c(t−1)
j ,−→v j,

−→x ij

)
| j ∈ Ni

}})
.
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BASELINE
CHARACTERSING THE EXPRESSIVE POWER OF GGNN

Theorem Any pair of geometric graphs distinguishable by a G-equivariant GNN is also
distinguishable by GWL.
Proposition: G-equivariant GNNs have the same expressive power as GWL if the following
conditions hold: (1) The aggregation AGG is an injective, G-equivariant multiset function. (2) The
scalar part of the update UPDs is a G-orbit injective, G-invariant multiset function. (3) The vector
part of the update UPDv is an injective, G-equivariant multiset function. (4) The graph-level readout
f is an injective multiset function.
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EXPERIMENTS
DEPTH AND NON LOCAL PROPERTIES

Here we train G-equivariant and G-invariant GNNs on two k chains graph in each run. Each pair of
k chain graphs contain k + 2 nodes with k nodes arranged in a line and are different by the
orientation of the two end points. In every run the number of layers are increased. Since the k chain
graphs are

(⌊
k
2

⌋
+ 1

)
hop different so theoretically GWL requires only

(⌊
k
2

⌋
+ 1

)
iterations to

distinguish them

(k=4 chains) GNN Layer
Number of Layers
[k/2] [k/2]+1=3 [k/2]+2 [k/2]+3 [k/2]+4

IGWL 50% 50% 50% 50% 50%
SchNet 50.00±0.00 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
DimeNet 50.00±0.00 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
GWL 50% 100% 100% 100% 100%
E-GNN 50.00±0.00 50.00±0.0 50.00±0.0 50.00±0.0 100.00±0.0
GVP-GNN 50.00±0.00 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0
TFN 50.00±0.00 50.00±0.0 50.00±0.0 80.0±24.5 85.0±22.9
MACE 50.00±0.00 90.0±20.0 90.0±20.0 95.0±15.0 95.0±15.0

Table. Results for experiment on depth
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EXPERIMENTS
HIGHER ORDER TENSOR AND ROTATIONAL SYMMETRY

An L-fold symmetric structure does not change when rotated by an angle 2π
L about a point in 2D and

an axis in 3D. Two distinct rotated versions of each L-fold symmetric structure are taken and single
layer G-equivariant GNNs are trained on them to classify them.

GNN Layer
Rotational Symmetry
2-fold 3-fold 5-fold 10-fold

E-GNN (L=1) 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
GVP-GNN (L=1) 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
TFN/MACE (L=1) 50.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
TFN/MACE (L=2) 100.00±0.0 50.00±0.0 50.00±0.0 50.00±0.0
TFN/MACE (L=3) 100.00±0.0 100.00±0.0 50.00±0.0 50.00±0.0
TFN/MACE (L=5) 100.00±0.0 100.00±0.0 100.00±0.0 50.00±0.0
TFN/MACE (L=10) 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0

Table. Result for experiment on tensor order. L denotes the tensor order taken
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