Estimation of Electronic Band Gap Energy Using Machine Learning

Sagar Prakash Barad & Sajag Kumar

Zhang Y, Xu W, Liu G, Zhang Z, Zhu J, Li M (2021) Bandgap prediction of two-dimensional materials using machine learning. PLoS ONE 16(8): e0255637. https://doi.org/10.1371/journal. pone.0255637.

(Without 'gap_nosoc')

Models	Parameters	MAE	RMSE	R ²
SVR	C = 50, epsilon = 0.2 gamma = 50,kernel = rbf			
GBDT	n_estimators = 21000, max_depth = 21, min_samples_split = 5, max_features = 0.8, learning_rate = 0.001			
RF	n_estimators = 15000, max_depth = 20, min_samples_split = 5,max_features = 0.8, min_samples_leaf = 3	0.10	0.27	0.90
MLP	solver = adam, hidden_layer_sizes = (262,140,139,180), activation = tanh,alpha = 1e-8, tol = 1e-6, max_iter = 5000, learning_rate_init = 0.01	0.24	0.43	0.73

Models	Parameters	MAE	RMSE	R ²
SVR	C = 50, epsilon = 0.2 gamma = 50,kernel = rbf	0.11	0.17	0.95
GBDT	n_estimators = 21000, max_depth = 21, min_samples_split = 5, max_features = 0.8, learning_rate = 0.001			
RF	n_estimators = 15000, max_depth = 20, min_samples_split = 5,max_features = 0.8, min_samples_leaf = 3	0.03	0.10	0.98
MLP	solver = adam, hidden_layer_sizes = (262,140,139,180), activation = tanh,alpha = 1e-8, tol = 1e-6, max_iter = 5000,		0.12	0.97
	learning_rate_init = 0.01			

Kauwe, S.K., Welker, T. & Sparks, T.D. Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning. Integr Mater Manuf Innov 9, 213–220 (2020).

(With 'gap_nosoc')

• Composition based. • Low accuracy on individual models. • Heterogeneous dataset.

- Used DFT based features.
- Big dataset.
- Used neural networks.

Midway Targets

- 3. Perform ensemble learning to improve upon the hitherto achieved results.

Ensemble methods implemented. But worse results achieved.

Expected Results

2. Ensemble learning: better results than the individual algorithms.

1. Come up with a consistent set of features/classification scheme for different types of materials.

Done. But in a different way.

2. Implement classic machine learning algorithms to achieve the current state-of-the-art results.

Done.

1. Performance of ML algorithms: as good as in case of specific types of materials.

Slightly worse.

Nope.

C₂DB

3129 rows and 8 (9) columns

DATASET(s)

JARVIS

6590 rows and 10 columns

A New Material

1. Classified as a metal or non-metal.

- 3. Fed to the model corresponding to the assigned cluster.
- 4. Estimated band gap.

2. If classified as a non-metal, assigned to the corresponding cluster.

Classifier

C₂DB

JARVIS

Clustering

C2DB

7 Clusters

eps = 120 and min_samples = 1

JARVIS

6 Clusters

eps = 100 and $min_samples = 3$

Regression

	C2DB				JARVIS		
	R^2	MAE	RMSE	R^2	MAE	RMSE	
SVR	0.73	0.24	0.41	0.74	0.46	0.81	
RF	0.90	0.10	0.25	0.82	0.88	1.28	
GBDT	0.91	0.09	0.24	0.77	0.38	0.75	

Ensembles

Future Plans

- 1. Improve the ensemble methods and train them on the clusters obtained through DBSCAN.
- 2. Further improve the metal non-metal classifier through ensemble methods.
- 3. Explore encoding methods to enable better learning of material properties.
- 4. Train deep learning networks on bigger datasets such as Materials Project and AFLOW.
- 5. Explore the use of graph neural networks and representation learning in learning materials properties

1. Yan K., Liu Y., Lin Y., & Ji S. (2022) Periodic graph transformers for crystal material property prediction. 36th Conference on Neural Information Processing Systems (NeurIPS 2022). 2. Dong Y, Wu C, Zhang C, Liu Y, Cheng J, Lin J (2019) Bandgap prediction in configurationally hybridised graphene and boron nitride, npj Computational Materials (2019). 3. Rosen I., Qu J., & Marks J. (2018) Predicting electronic properties of materials. CS229 Report.

