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• Composition based. 
• Low accuracy on individual models. 
• Heterogeneous dataset.

• Used DFT based features. 
• Big dataset. 
• Used neural networks.



Midway Targets 

1. Come up with a consistent set of features/classification scheme for different types of materials. 

Done. But in a different way. 

2. Implement classic machine learning algorithms to achieve the current state-of-the-art results. 

Done. 

3. Perform ensemble learning to improve upon the hitherto achieved results. 

Ensemble methods implemented. But worse results achieved. 

Expected Results 
1. Performance of ML algorithms: as good as in case of specific types of materials. 

Slightly worse. 

2.  Ensemble learning: better results than the individual algorithms. 

Nope.
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A New Material

1. Classified as a metal or non-metal. 

2. If classified as a non-metal, assigned to the corresponding cluster. 

3. Fed to the model corresponding to the assigned cluster.  

4. Estimated band gap.
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7 Clusters 

 eps = 120 and min_samples = 1
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6 Clusters 
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Future Plans

1. Improve the ensemble methods and train them on the clusters obtained through DBSCAN. 
2. Further improve the metal non-metal classifier through ensemble methods. 
3. Explore encoding methods to enable better learning of material properties. 
4. Train deep learning networks on bigger datasets such as Materials Project and AFLOW. 
5. Explore the use of graph neural networks and representation learning in learning materials properties 
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