
KNN: K-NEAREST NEIGHBOURS
CS456 - MACHINE LEARNING SPRING 2023

Rahul Vishwakarma, Jyothish Kumar J

School of Computer Sciences,
National Institute of Science Education and Research, Bhubaneshwar,

Homi Bhabha National Institute

February 19, 2023

PART I: THEORY

1 Introduction . 4
1.1 General Information . 4
1.2 Special Points . 6

2 Applications . 7

3 Algorithm . 8

3.1 Overview and Psuedocode . 8
3.2 Distance Metrics . 9

1 / 17

PART II: DEMONSTRATION

1 Data collection and processing . 11

2 Code . 12
2.1 Image to Vector . 12
2.2 General classification scheme . 13
2.3 Handwriting recognition . 14

3 Observations and Results . 16

2 / 17

Part I

THEORY

3 / 17

INTRODUCTION
GENERAL INFORMATION

Figure. Visual representation of k-NN classification
[Gandhi n.d.]

▶ k-NN or K-Nearest Neighbour is a
supervised classification algorithm.

▶ When a new piece of data is received, it’s
compared against all existing pieces of data
for similarity. Once the top ’k’ nearest
neighbors are identified, a majority vote is
taken from these k data-points and the new
point is assigned the majority vote as its
class.

▶ Here ’k’ is the hyper-parameter responsible
for controlling the inductive bias.
[Harrington 2012]

▶ There is no training involved in this algorithm.
These kinds of models are called
Instance-based learning.

4 / 17

INTRODUCTION
GENERAL INFORMATION

▶ While chosen k can be both odd/even, Odd values of k is preferred since majority voting is
done to get the classifying radius. If voting is near 50:50, weightage can be given to points to
prevent anomalies.

▶ For large values of k, this model becomes computationally expensive.
▶ Computational geometry concepts such as Voronoi diagrams (Fig.2) are used for finding the

neighborhood.

Figure. Voronoi Diagram [Bellelli n.d.]

5 / 17

INTRODUCTION
SPECIAL POINTS

▶ The algorithm has to carry around the full dataset; for large datasets, this implies a large
amount of storage. In addition, you need to calculate the distance measurement for every piece
of data in the database, and this can be cumbersome.

▶ An additional drawback is that kNN doesn’t give you any idea of the underlying structure of
the data; you have no idea what an “average” or “exemplar” instance from each class looks like.

– Pros: High accuracy, insensitive to outliers, no assumptions about data.
– Cons: Computationally expensive, requires a lot of memory.
– Works with: Numeric values and nominal values.

6 / 17

APPLICATIONS

The following example problem statements can be well addressed using kNN as a classifier.
1. Handwriting recognition: Given enough samples of handwritten specimen, a kNN classifier

can be used to identify any new letter/number based on it’s appearance similarity with the
sample data. We will explore the implementation of this example in Part 2. [Code and Dataset
obtained from [GitHub - pbharrin/machinelearninginaction: Source Code for the book: Machine
Learning in Action published by Manning — github.com n.d.]]

2. Match making on dating sites: Classifier can match like-minded people using their inputs
collected at the time of registration.

3. Movie classification: Classification of any given movie into genres such as romance, action,
comedy etc. based on various features.

etc.

7 / 17

ALGORITHM
OVERVIEW AND PSUEDOCODE

After collection and preparation of data. The foundational steps involved in k-NN algorithm are as
follows:

1. Distance calculation
2. Sorting dictionary
3. Voting with lowest k distances

Psuedocode is given as:
For every point in our dataset:

– calculate the distance between inX and the current point
– sort the distances in increasing order
– take k items with lowest distances to inX
– find the majority class among these items
– return the majority class as our prediction for the class of inX

8 / 17

ALGORITHM
DISTANCE METRICS

▶ For the algorithm to work best on a particular dataset we need to choose the most appropriate
distance metric accordingly. Some of the commonly used distance matrices for kNN are:

1. Euclidean Distance

d =

√√√√ n∑
i=1

(xi − yi)2

2. Minkowski Distance

d =

(n∑
i=1

|xi − yi|p
)1/p

3. Manhattan Distance

d =
n∑

i=1

|xi − yi|

9 / 17

Part II

DEMONSTRATION

10 / 17

DATA COLLECTION AND PROCESSING

▶ Aim: To design a classifier that recognizes a given image of a hand-written figure of a number
between 0 to 9.

▶ Data-set: Over 2000 image samples of hand written numbers (0-9), approximately 200 samples
per digit. Data made available in public domain by [Alpaydin and Kaynak n.d.].

▶ Obtained images are equivalent to a 32 x 32 matrix of 0s and 1s. Dark or inked areas of image
reprented by 1s and blank areas by 0s. [Fig. 3] These matrices are then converted to vectors of 1
x 1024. 1

Figure. Binary representation of a sample image.

1To make demonstration/replication easy, The converted vector has been provided for download [here.] 11 / 17

https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/digits.zip

CODE
IMAGE TO VECTOR

The python code used to convert image files to 1 x 1024 vector on binary is given below:
1 def img2vector(filename):
2 returnVect = zeros((1,1024))
3 fr = open(filename)
4 for i in range(32):
5 lineStr = fr.readline()
6 for j in range(32):
7 returnVect[0,32*i+j] = int(lineStr[j])
8 return returnVect

Output:

Figure. Output for the function img2vector().

12 / 17

CODE
GENERAL CLASSIFICATION SCHEME

The below function (classify0()) is used to classify any data-set by calling the function with
these 4 parameters:

1. Test vector
2. Training matrix
3. List of labels
4. K value (Hyperparameter)

1 def classify0(inX, dataSet, labels, k):
2 dataSetSize = dataSet.shape[0]
3 diffMat = tile(inX, (dataSetSize,1)) - dataSet
4 sqDiffMat = diffMat**2
5 sqDistances = sqDiffMat.sum(axis=1)
6 distances = sqDistances**0.5
7 sortedDistIndicies = distances.argsort()
8 classCount={}
9 for i in range(k):

10 voteIlabel = labels[sortedDistIndicies[i]]
11 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
12 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse

=True)
13 return sortedClassCount[0][0]

13 / 17

CODE
HANDWRITING RECOGNITION

▶ We have compiled the procured dataset into Test and Training folders [Download]. Though the
Training folder contains 2000 data-points (each being 1024-entry Floating Point Vectors).

▶ The python code used for handwriting recognition from our dataset is given in the next slide.
▶ The code tests the recognition of 900 Samples given in the Test folder.
▶ function handwritingClassTest(); is a self contained classifier that tests our classifier. The

code does three things:
1. Parces each test file using OS functions in python.
2. uses the previously discussed img2vector() function to convert the sample to vector.
3. sends the vector through the classification function (classify0()) along with the

training matrix, lables and K value. to obtain the output.
4. evaluates the output for error and reports the results along with accuracy of recognition /

classification. The output of this function is shown in Fig. 5

14 / 17

https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/digits.zip

CODE
HANDWRITING RECOGNITION

1 def handwritingClassTest():
2 hwLabels = []
3 trainingFileList = listdir(’trainingDigits’) #load the training set
4 m = len(trainingFileList)
5 trainingMat = zeros((m,1024))
6 for i in range(m):
7 fileNameStr = trainingFileList[i]
8 fileStr = fileNameStr.split(’.’)[0] #take off .txt
9 classNumStr = int(fileStr.split(’_’)[0])

10 hwLabels.append(classNumStr)
11 trainingMat[i,:] = img2vector(’trainingDigits/%s’ % fileNameStr)
12 testFileList = listdir(’testDigits’) #iterate through the test set
13 errorCount = 0.0
14 mTest = len(testFileList)
15 for i in range(mTest):
16 fileNameStr = testFileList[i]
17 fileStr = fileNameStr.split(’.’)[0] #take off .txt
18 classNumStr = int(fileStr.split(’_’)[0])
19 vectorUnderTest = img2vector(’testDigits/%s’ % fileNameStr)
20 classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
21 print "the classifier came back with: %d, the real answer is: %d" % (

classifierResult, classNumStr)
22 if (classifierResult != classNumStr): errorCount += 1.0
23 print "\nthe total number of errors is: %d" % errorCount
24 print "\nthe total error rate is: %f" % (errorCount/float(mTest))

15 / 17

OBSERVATIONS AND RESULTS

Figure. Output of function handwritingClassTest()

▶ The error rate obtained in our experiment = 1.2 %
▶ For each 900 test cases we had to do 2000 distance calculations on a 1024-entry floating point

vector. Though easy to implement, This is resource extensive and inefficient. Additionally our
dataset (.txt file) was also 2 mb.

16 / 17

REFERENCES I

Alpaydin, E and C Kaynak (n.d.). “Optical recognition of handwritten digits data set. UCI
Machine Learning Repository (1998)”. In: URL https://archive. ics. uci. edu/ml/datasets/Optical+
Recognition+ of+ Handwritten+ Digits ().
Bellelli, Francesco (n.d.). The fascinating world of Voronoi diagrams — towardsdatascience.com.
https://towardsdatascience.com/the-fascinating-world-of-voronoi-
diagrams-da8fc700fa1b. [Accessed 19-Feb-2023].
Gandhi, Sai Kumar (n.d.). Finding out Optimum Neighbours (n) number in the KNN classification
using Python — medium.com.
https://medium.com/analytics-vidhya/finding-out-optimum-neighbours-n-
number-in-the-knn-classification-using-python-9bdcfefff58c. [Accessed
19-Feb-2023].
GitHub - pbharrin/machinelearninginaction: Source Code for the book: Machine Learning in Action
published by Manning — github.com (n.d.).
https://github.com/pbharrin/machinelearninginaction.git. [Accessed
19-Feb-2023].
Harrington, Peter (Apr. 2012). Machine Learning in Action. en. London, England: Simon and
Schuster.

17 / 17

https://towardsdatascience.com/the-fascinating-world-of-voronoi-diagrams-da8fc700fa1b
https://towardsdatascience.com/the-fascinating-world-of-voronoi-diagrams-da8fc700fa1b
https://medium.com/analytics-vidhya/finding-out-optimum-neighbours-n-number-in-the-knn-classification-using-python-9bdcfefff58c
https://medium.com/analytics-vidhya/finding-out-optimum-neighbours-n-number-in-the-knn-classification-using-python-9bdcfefff58c
https://github.com/pbharrin/machinelearninginaction.git

	Theory
	Introduction
	General Information
	Special Points

	Applications
	Algorithm
	Overview and Psuedocode
	Distance Metrics

	Demonstration
	Data collection and processing
	Code
	Image to Vector
	General classification scheme
	Handwriting recognition

	Observations and Results
	References

