KNN: K-NEAREST NEIGHBOURS CS456 - Machine Learning Spring 2023

Rahul Vishwakarma, Jyothish Kumar J

School of Computer Sciences, National Institute of Science Education and Research, Bhubaneshwar, Homi Bhabha National Institute

February 19, 2023

PART I: THEORY

1	Introc	luction
	1.1	General Information
	1.2	Special Points

2 /	Applications .	•	• •	•	•	•	•	•	•••			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	7
-----	----------------	---	-----	---	---	---	---	---	-----	--	--	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---

3	Algor	ithm	8
	3.1	Overview and Psuedocode	8
	3.2	Distance Metrics	9

PART II: DEMONSTRATION

1	Data collection and processing	•	•	• •	••	•	•	•	•	•••	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•		1	1
---	--------------------------------	---	---	-----	----	---	---	---	---	-----	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	--	---	---	---	--	---	---

2	Code	
	2.1	Image to Vector
	2.2	General classification scheme
	2.3	Handwriting recognition

3	Observations and Results .	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	16	6
---	-----------------------------------	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	----	---

Part I

THEORY

INTRODUCTION General Information

Figure. Visual representation of k-NN classification [Gandhi n.d.]

- k-NN or K-Nearest Neighbour is a supervised classification algorithm.
- When a new piece of data is received, it's compared against all existing pieces of data for similarity. Once the top 'k' nearest neighbors are identified, a majority vote is taken from these k data-points and the new point is assigned the majority vote as its class.
- Here 'k' is the hyper-parameter responsible for controlling the inductive bias. [Harrington 2012]
- There is *no training involved* in this algorithm. These kinds of models are called Instance-based learning.

- While chosen k can be both odd/even, Odd values of k is preferred since majority voting is done to get the classifying radius. If voting is near 50:50, weightage can be given to points to prevent anomalies.
- ► For large values of k, this model becomes computationally expensive.
- Computational geometry concepts such as Voronoi diagrams (Fig.2) are used for finding the neighborhood.

Figure. Voronoi Diagram [Bellelli n.d.]

INTRODUCTION Special Points

- The algorithm has to carry around the full dataset; for large datasets, this implies a large amount of storage. In addition, you need to calculate the distance measurement for every piece of data in the database, and this can be cumbersome.
- An additional drawback is that kNN doesn't give you any idea of the underlying structure of the data; you have no idea what an "average" or "exemplar" instance from each class looks like.

- Pros: High accuracy, insensitive to outliers, no assumptions about data.
- **Cons:** Computationally expensive, requires a lot of memory.
- Works with: Numeric values and nominal values.

APPLICATIONS

The following example problem statements can be well addressed using kNN as a classifier.

- 1. Handwriting recognition: Given enough samples of handwritten specimen, a kNN classifier can be used to identify any new letter/number based on it's appearance similarity with the sample data. We will explore the implementation of this example in Part 2. [Code and Dataset obtained from [*GitHub pbharrin/machinelearninginaction: Source Code for the book: Machine Learning in Action published by Manning github.com* n.d.]]
- 2. **Match making on dating sites:** Classifier can match like-minded people using their inputs collected at the time of registration.
- 3. **Movie classification:** Classification of any given movie into genres such as romance, action, comedy etc. based on various features.

etc.

ALGORITHM OVERVIEW AND PSUEDOCODE

After collection and preparation of data. The foundational steps involved in k-NN algorithm are as follows:

- 1. Distance calculation
- 2. Sorting dictionary
- 3. Voting with lowest k distances

Psuedocode is given as:

For every point in our dataset:

- calculate the distance between inX and the current point
- sort the distances in increasing order
- take k items with lowest distances to inX
- find the majority class among these items
- return the majority class as our prediction for the class of inX

ALGORITHM DISTANCE METRICS

- For the algorithm to work best on a particular dataset we need to choose the most appropriate distance metric accordingly. Some of the commonly used distance matrices for kNN are:
 - 1. Euclidean Distance

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2. Minkowski Distance

$$d = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{1/p}$$

3. Manhattan Distance

$$d = \sum_{i=1}^{n} |x_i - y_i|$$

Part II

DEMONSTRATION

DATA COLLECTION AND PROCESSING

- Aim: To design a classifier that recognizes a given image of a hand-written figure of a number between 0 to 9.
- Data-set: Over 2000 image samples of hand written numbers (0-9), approximately 200 samples per digit. Data made available in public domain by [Alpaydin and Kaynak n.d.].
- Obtained images are equivalent to a 32 x 32 matrix of 0s and 1s. Dark or inked areas of image reprented by 1s and blank areas by 0s. [Fig. 3] These matrices are then converted to vectors of 1 x 1024.¹

000000000000000000011111100000000	000000011111110000000000000000000000000
00000000000000001111111111000000	000000011111111100000000000000000000000
000000000000001111111111111000000	000000111111111111000000000000000000000
000000000000111111111111111100000	000001111111111111000000000000000000000
0000000000011111111111111111000000	000001111111111111000000000000000000000
00000000001111111100111111000000	000000111111111111100000000000000000000
0000000001111110000011111000000	0000001111111111111000000000000000000
000000011111110000011111000000	000000111100011111110000000000000000000
000000011111100000011110000000	000000011000001111110000000000000000000
000000011111000000011110000000	000000000000001111110000000000000000000
0000001111110000000111100000000	000000000000001111110000000000000000000
00000011111100000001100000000000	00000000000000111111000000000 000000000
00000001111110000001111110000000	00000000000000111111000000000 000000000
00000001111111000001111110000000	00000000000000111111000000000 000000000
00000001111111110001111110000000	00000000000000111111000000000 00000000111111
000000000111111111111111100000000	
000000000001111111111111100000000	
000000000001111111111111000000000	
000000000000000111111111000000000	
00000000000000000111111000000000	
0000000000000000111111000000000	
000000000000000111111000000000000	000000000001111110000000000000000000000
000000000000000111111000000000000	000000000001111110000000000000000000000
000000000000001111110000000000000000000	
000000000000001111110000000000000000000	
000000000000001111110000000000000000000	
000000000000001111110000000000000000000	00000001111111111111111111111100000 000000
000000000000001111110000000000000000000	
000000000000000000000000000000000000000	
000000000000001111100000000000000000000	
000000000000000111100000000000000000000	
000000000000000001111000000000000000000	

Figure. Binary representation of a sample image.

¹To make demonstration/replication easy, The converted vector has been provided for download [here.]

CODE Image to Vector

The python code used to convert image files to 1 x 1024 vector on binary is given below:

```
1 def img2vector(filename):

2   returnVect = zeros((1,1024))

3   fr = open(filename)

4   for i in range(32):

5        lineStr = fr.readline()

6        for j in range(32):

7        returnVect[0,32*i+j] = int(lineStr[j])

8   return returnVect
```

Output:

Figure. Output for the function img2vector().

CODE GENERAL CLASSIFICATION SCHEME

The below function (classify0()) is used to classify any data-set by calling the function with these 4 parameters:

- 1. Test vector
- 2. Training matrix
- 3. List of labels
- 4. K value (Hyperparameter)

```
1 def classify0(inX, dataSet, labels, k):
      dataSetSize = dataSet.shape[0]
2
      diffMat = tile(inX, (dataSetSize,1)) - dataSet
3
      sqDiffMat = diffMat * 2
4
      sqDistances = sqDiffMat.sum(axis=1)
5
      distances = sqDistances * *0.5
6
      sortedDistIndicies = distances.argsort()
      classCount={}
8
      for i in range(k):
9
          voteIlabel = labels[sortedDistIndicies[i]]
10
          classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
      sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse
12
      =True)
      return sortedClassCount[0][0]
13
```

CODE HANDWRITING RECOGNITION

- We have compiled the procured dataset into Test and Training folders [Download]. Though the Training folder contains 2000 data-points (each being 1024-entry Floating Point Vectors).
- ► The python code used for handwriting recognition from our dataset is given in the next slide.
- The code tests the recognition of 900 Samples given in the Test folder.
- function handwritingClassTest(); is a self contained classifier that tests our classifier. The
 code does three things:
 - 1. Parces each test file using OS functions in python.
 - 2. uses the previously discussed img2vector() function to convert the sample to vector.
 - 3. sends the vector through the classification function (classify0()) along with the training matrix, lables and K value. to obtain the output.
 - 4. evaluates the output for error and reports the results along with accuracy of recognition / classification. The output of this function is shown in Fig. 5

CODE HANDWRITING RECOGNITION

```
1 def handwritingClassTest():
      hwLabels = []
2
      trainingFileList = listdir('trainingDigits')  #load the training set
3
      m = len(trainingFileList)
4
      trainingMat = zeros((m, 1024))
5
      for i in range(m):
6
          fileNameStr = trainingFileList[i]
7
          fileStr = fileNameStr.split('.')[0] #take off .txt
8
          classNumStr = int(fileStr.split('_')[0])
9
          hwLabels.append(classNumStr)
10
          trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
11
      testFileList = listdir('testDigits') #iterate through the test set
12
      errorCount = 0.0
13
      mTest = len(testFileList)
14
      for i in range(mTest):
15
          fileNameStr = testFileList[i]
16
          fileStr = fileNameStr.split('.')[0] #take off .txt
17
          classNumStr = int(fileStr.split('_')[0])
18
          vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
19
          classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
20
          print "the classifier came back with: %d, the real answer is: %d" % (
21
     classifierResult, classNumStr)
          if (classifierResult != classNumStr): errorCount += 1.0
22
      print "\nthe total number of errors is: %d" % errorCount
23
      print "\nthe total error rate is: %f" % (errorCount/float(mTest))
24
```

OBSERVATIONS AND RESULTS

```
>>> kNN.handwritingClassTest()
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 0, the real answer is: 0
.
.
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 6, the real answer is: 8
the classifier came back with: 9, the real answer is: 9
the total number of errors is: 11
the total error rate is: 0.011628
```

Figure. Output of function handwritingClassTest()

- ▶ The error rate obtained in our experiment = 1.2 %
- For each 900 test cases we had to do 2000 distance calculations on a 1024-entry floating point vector. *Though easy to implement, This is resource extensive and inefficient*. Additionally our dataset (.txt file) was also 2 mb.

References I

- Alpaydin, E and C Kaynak (n.d.). "Optical recognition of handwritten digits data set. UCI Machine Learning Repository (1998)". In: URL https://archive. ics. uci. edu/ml/datasets/Optical+Recognition+ of+ Handwritten+ Digits ().
- Bellelli, Francesco (n.d.). The fascinating world of Voronoi diagrams towardsdatascience.com. https://towardsdatascience.com/the-fascinating-world-of-voronoidiagrams-da8fc700fa1b. [Accessed 19-Feb-2023].
- Gandhi, Sai Kumar (n.d.). Finding out Optimum Neighbours (n) number in the KNN classification using Python medium.com.

https://medium.com/analytics-vidhya/finding-out-optimum-neighbours-nnumber-in-the-knn-classification-using-python-9bdcfefff58c. [Accessed 19-Feb-2023].

GitHub - pbharrin/machinelearninginaction: Source Code for the book: Machine Learning in Action published by Manning — github.com (n.d.).

https://github.com/pbharrin/machinelearninginaction.git.[Accessed 19-Feb-2023].

Harrington, Peter (Apr. 2012). *Machine Learning in Action*. en. London, England: Simon and Schuster.