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QUICK RECAP
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RECAP: SUPPORT VECTOR MACHINE

SVMs or Support Vector Machines are supervised learning algorithm that are used primarily for
binary classification of data points which are linearly separable in a given dimension. The objective
of SVM is to find the hyperplane that maximizes the margin, that is,

max
2

||w||

where
wTx + b = 0

is the equation of the hyperplane. In the case of a labelled data set in which there is clear linear
separation between the two classes, SVM can be easily applied.
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RECAP:SUPPORT VECTOR MACHINE

Suppose that the two classes are well separated, however, there are some outliers that are
misclassified as they lie within the maximised margin for which a hyperplane has been decided.
This situation introduced us to soft margin SVM and hard margin SVM.
Hard margin SVM do not allow any misclassification. Even if the data is well separated except for
negligible outliers, Hard margin SVM does not return the hyperplane that is a good generalisation.
Soft margin SVM allows some misclassification such that the hyperplane returned will have
maximum margin. This prevents much misclassification in the training data set.
To penalise misclassification, Hinge Loss function is introduced.

min( max(0, 1 − yi.f (wTxi + b) +
c
2
||w||))
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Part II

PRIMAL-DUAL LAGRANGIAN
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LAGRANGIAN

If we have an optimization problem,
min f (x) (1)

subject to the constraints:
g(xi) ≤ 0 (where i = 1,2,3,....,k) (2)

h(xi)0 (where i = 1,2,3,....,l) (3)

The above function can be converted into Primal Lagrangian (Θp) using Lagrange multipliers, α
and β where αi ≥0, as

Θp = max L(x, α, β) = f (x) + Σαig(xi) + Σβih(xi) (4)

Inference from the above equation

Θp = f (x) (when constraints are satisfied)

Θp = ∞ (when constraints are not satisfied)
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LAGRANGIAN

Hence, when all the constraints are satified, the problem of finding the minimum of f(x) (1) becomes
finding the value of α and β such that the Lagrangian L is maximum. Therefore, the optimization
problem is

min max(L(x, α, β)

In the dual of the above optimization problem, we have

max min(L(x, α, β)

Here we look for the optimal x rather than α, β that minimized the Lagrangian.
In the above case

(dual) max min(L(x, α, β) = min max(L(x, α, β) (primal)

That is, solving the dual solves the primal.
Here, solving the dual is easier than solving the primal as it involves minimization of Lagrangian,
that is, Lagragian is minimum for x where

∂L
∂x

= 0 (5)
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PRIMAL-DUAL LAGRANGIAN

SVM optimization problem is given by

min
1
2
||w||2 (6)

subject to the constraints
1 − yi(wx + b) ≤ 0 (where i=1,2,3,....k) (7)

Here, (1) is analogous to (6) and (2) is analogous to (7). Hence, we can construct primal-dual
Lagrangian for SVM.

L(w, α) =
1
2
||w||2 +Σαi(1 − yi(wx + b)) (8)

The primal is

Θp = max L(w, α) =
1
2
||w||2

The optimization problem is then
min max L(w, α)
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PRIMAL-DUAL LAGRANGIAN

To convert the primal to dual, we minimize the Lagrangian,

∂L
∂w

= 0

This gives,
w = Σαiyixi

Since, b is a constant,
∂L
∂b

= 0 (9)

This gives,
Σαiyi = 0 (10)
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PRIMAL-DUAL LAGRANGIAN

Plugging in (9) and (10) to (8), we obtain

L(w, α) = Σiαi −
1
2
Σi,jαiαjyiyjxixj

which can be written as a dot product of two vectors

L(w, α) = Σiαi −
1
2
Σi,jαiαjyiyj < xi, xj >
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WHAT IF THE DATA IS LINEARLY NOT SEPARABLE

Suppose we have a set of linearly non separable data points and . In order to apply SVM to the
given data points, we project them to a higher dimension (say, ϕ space) where the data points are
linearly separable.
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WHAT IF THE DATA IS LINEARLY NOT SEPARABLE?

For example, in this case we have done

(xi)
ϕ−−→ (xi, x2

i )

where i represents the index of the data points
The respective data points in ϕ space, that is, and , then undergo binary classification using SVM
in that dimension. The straight line in the figure represents the hyperplane in the ϕ space. The
classified data points are then projected back to the old lower dimension.
However, projecting each and every data point onto a higher dimension and back is
computationally expensive, especially for large data sets. Hence we introduce Kernel Trick.
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NON-LINEAR SVM

SVM is implemented to classify linearly inseparable data points using a family of functions known
as kernel functions. Using kernel functions, relationships between data points in higher dimension
space can be calculated, without actually transforming the data points to points in higher
dimensions. This method is called Kernel Trick. To carry out the kernel trick, the dot product in dual
Lagrangian of SVM is exploited [Ng n.d.]. We have the Lagrangian

L(w, α) = Σiαi −
1
2
Σi,jαiαjyiyj < xi, xj >

We replace the dot product with
K(xi, xj) = ϕ(xi)ϕ(xj)

Here K is the Kernel Function and ϕ is the feature vector.
Since K returns a real number, it is computationally inexpensive than projecting each data points to
a higher dimension, especially for large datasets.
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NON-LINEAR SVM

Figure. Here we were able to linearly classify the data using a plane in the ϕ space

The Lagrangian dual for non-linear SVM is hence defined as

maxα Σiαi −
1
2
Σi,jαiαjyiyjK(xi, xj)

subject to
Σiαiyi = 0

C ≥ αi ≥ 0

where
K(xi, xj) = ϕ(xi)ϕ(xj)

Some of the kernel functions covered in the class are discussed in the following . 16 / 21



POLYNOMIAL KERNEL

Given below is a polynomial kernel of degree up to d,

K(x, z) = (xz + c)d (11)

where
. x,z=two different features of the dataset
. c=coefficient of the polynomial
. d=degree of the polynomial

Here c and d are real numbers and are hyperparameters,hence have to be found using cross
validation.(give the link to the other slide here) The above equation computes the relationships
between pairs of features.
▶ How to find the ϕ for (xz + c)d?

Step 1- Expand (xz + c)d

Step 2- Find which of the elements in the expanded (xz + c)d give the dot product equal to
ϕ(x)ϕ(z) = (xz + c)d.

Lets take an example of Quadratic Kernel.
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QUADRATIC KERNEL

For quadratic kernel d=2.Hence
K(x, z) = (xz + c)2 (12)

Taking c = 1
2 we get

(xz +
1
2
)2 = (xz +

1
2
)(xz +

1
2
) = xz + x2z2 +

1
4
= (x, x2,

1
2
).(z, z2,

1
2
) = ϕ(x)ϕ(z) (13)

where
. ϕ(x) = (x, x2, 1

2)

. ϕ(z) = (z, z2, 1
2)

Here the dot product gives us the higher dimensional coordinates for the data (and it behaves like a
weighted K nearest neighbour model.)
Taking c = 1

(xz + 1)2 = (xz + 1)(xz + 1) = 2xz + x2z2 + 1 = (
√

2x, x2, 1).(
√

2z, z2, 1) = ϕ(x)ϕ(z) (14)

where
. ϕ(x) = (

√
2x, x2, 1)

. ϕ(z) = (
√

2z, z2, 1)
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RADIAL BASIS FUNCTION(RBF) KERNEL

It can be used to deal with overlapping data.Given below is the Gaussian Kernel RBF,

K(x, z) = e−γ||x−z||2 (15)

here Gaussian Radial basis function,γ = 1
σ2 and γ > 0 and is the amount of influence the two points

have on each other.Here σ is the spread parameter that plays the same role as standard deviation in
normal density function.
Here x and z refers to two different observation in the dataset and ||x − z||2 is the squared distance
between two observation.
Let

s2 = e−
γ
2 (x

2+z2) (16)

Taylor expansion of eγxz around γxz = 0 we get

eγxz =

∞∑
k=0

(γxz)2

k!
= (1,

√
γ

1!
x,

√
γ2

2!
x2,

√
γ3

3!
x3, ...).(1,

√
γ

1!
z,

√
γ2

2!
z2,

√
γ3

3!
z3, ...) (17)
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RADIAL BASIS FUNCTION(RBF) KERNEL

We can take
e−γ||x−z||2 = e−γ(x−z)2

(18)

and using Eqn.16 and Eqn.17 we get

e−γ(x−z)2
= e−

γ
2 (x

2+z2)eγxz = s2eγxz = s2(1,
√

γ

1!
x,

√
γ2

2!
x2,

√
γ3

3!
x3, ...).(1,

√
γ

1!
z,

√
γ2

2!
z2,

√
γ3

3!
z3, ...)

(19)

e−γ(x−z)2
= (s, s

√
γ

1!
x, s

√
γ2

2!
x2, s

√
γ3

3!
x3, ...).(s, s

√
γ

1!
z, s

√
γ2

2!
z2, s

√
γ3

3!
z3, ...) (20)

Hence the above represents a dot product for infinite number of dimensions or we can say that
radial basis function maps the input space to the surface of an infinite dimensional
hyperspace[Póczos 2014].
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