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ABSTRACT
This work focuses on the application of point-cloud segmentation
techniques to the problem of substructure-finding in dark matter
halos from gravity-only N-body simulations. To find substructure or
subhalos, simulations use percolation algorithms, which typically
require simulation history and therefore, repeated invocations, in-
flating the simulation cost. In contrast, our neural network does not
demand simulation history, alleviating a portion of the simulation
cost, while producing good results. We expect that our approach can
act as a drop-in replacement to the traditional substructure-finding
algorithms in gravity-only N-body simulations.
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1 MOTIVATION
Simulation time directly affects the rate at which adjustments can
be made to the cosmological model under study, making lower sim-
ulation times desirable. In this work, we outline a neural network,
called DeepHalo, that does not need simulation history unlike tradi-
tional substructure-finders, therefore reducing the computational
cost and simulation time (refer to Table 1 for runtime comparison).

2 METHODOLOGY
We consider halos as point-clouds with a global gravitational po-
tential field (𝜌), i.e. (3 + 1)𝐷 points, that are to be segmented into
background, comprising particles gravitationally bound to the halo
& central subhalo (≥ 90%), and foreground, constituted by the re-
maining particles (≤ 10%). Clearly, there is a class imbalance. We
choose RandLA [2] as a base architecture to address this, as it has
attentive pooling & dilation modules that jointly allow for better
local structure capture. Here, the key idea is to utilize the local
variation in 𝜌 , along with particle positions. Another design choice
is to use Sigmoidal Focal Loss [3] instead of BinaryCrossEntropy,
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Table 1: Inference / runtime for substructure finders at red-
shift, 𝑧 = 0 [1, 4]. Note that our method does not require
repeated calls.

Substructure Finder Computation Time per call
SubFind (used in TNG) 35 hours /109 particles

HBT+ 100 seconds /106 particles
DeepHalo (RTX 2080Ti) 40 seconds /106 particles

Figure 1: Power spectrum comparison between our model
and SubFind. These are in good agreement at various scales.

so that overlapping components can be better distinguished. We
train on halos from the 𝑧 = 0 snapshot of the TNG50-3-Dark cata-
log from IllustrisTNG simulation [4] for 2 hours on 1 RTX 2080Ti,
after applying usual point-cloud data augmentation techniques.
After training, the network is used to segment arbitrary halos. This
inferencing step does not need simulation history.

3 ANALYSIS & CONCLUSION
We quantify segmentation performance using accuracy andDice Co-
efficient, which are 92.3% and 0.831 respectively. To check, whether
our substructure-finder leads to cosmologically consistent statis-
tical results, we compute the power spectrum, as shown in Fig. 1.
This along with inference times in Table 1 shows that DeepHalo is
sufficiently accurate and performant to act as a drop-in replacement
to traditional algorithms. In future work, we will test integration
with low-cost N-body solvers and analyze segmentation output at
smaller scales.

REFERENCES
[1] Jiaxin Han et al. 2017. HBT+: an improved code for finding subhaloes and building

merger trees in cosmological simulations. Monthly Notices of the Royal Astronomi-
cal Society 474, 1 (October 2017), 604–617.

[2] Qingyong Hu et al. 2020. RandLA-Net: Efficient Semantic Segmentation of Large-
Scale Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, New York, 11108–11117.

[3] FangYuan Huang et al. 2019. Weight Loss for Point Clouds Classification. Journal
of Physics: Conference Series 1229, 1 (May 2019), 012045.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


CODS-COMAD 2023, January 4–7, 2023, Mumbai, India Jyotirmaya Shivottam and Subhankar Mishra

[4] Annalisa Pillepich et al. 2018. Simulating galaxy formation with the IllustrisTNG
model. MNRAS 473, 3 (Jan. 2018), 4077–4106.


	Abstract
	1 Motivation
	2 Methodology
	3 Analysis & Conclusion
	References

