Al and Computer Vision for Autonomous Vehicles

CS Katha Barta at NISER Bhubaneswar

Dr. Ram Prasad Padhy

Computer Science & Engineering School of Electrical and Computer Sciences Indian Institute of Technology Bhubaneswar

August 28, 2024

Table of contents

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

Self Driving Cars

Source: https://www.walleniuswilhelmsen.com/insights/the-future-of-mobility-whatsthe-road-ahead-for-self-driving-vehicles

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

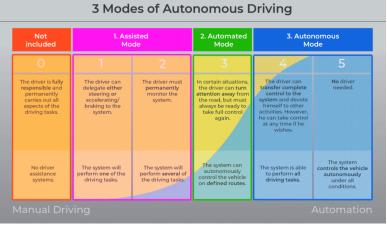
Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

Self Driving Cars

Source: https://www.alliedmarketresearch.com/autonomous-vehicle-market

 Also known as Autonomous Vehicles (AV), or Advanced Driver Assistance Systems (ADAS)

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

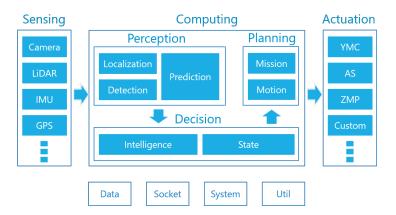

Self Driving Cars Industry

- Key Market Players: General Motors, Daimler AG, Ford Motor Company, Volkswagen Group, BMW AG, Renault-Nissan-Mitsubishi alliance, Volvo-Autoliv-Ericsson-Zenuity alliance, Groupe SA, AB Volvo, Toyota Motor Corporation, and Tesla Inc *etc*.
- Auto suppliers: Robert Bosch GMBH, Aptiv, Continental AG, and Denso Corporation *etc*.
- **Technology providers:** Waymo, NVDIA Corporation, Intel Corporation, Baidu, and Samsung *etc*.
- Service provider: Uber, Lyft and Didi Chuxing etc.

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

Levels of Vehicle Autonomy



Source: https://www.blickfeld.com/blog/levels-of-autonomous-driving/

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

ADAS Software Architecture

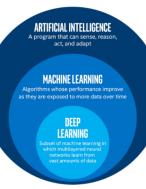
Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary


Self-Driving Cars Al-ML Revolution Al-ML for Self-driving Cars

AI-ML Revolution

McKinsey Global Institute^a

*https://mck.co/3mzGs5I


- Al is contributing to the transformation of the global economy
- 10 times faster, 300 times the scale, and 3000 times of 1st Industrial revolution.

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

AI-ML Revolution

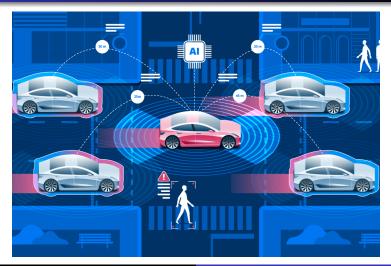
AI vs ML vs DL

- Al is considered as a broad field of research that includes ML
- Al can manage data of a more generic and abstract nature than ML
- Al enables the transfer of common solutions to different types of data without the need for complete retraining
- ML includes deep learning
- DL is based on artificial neural networks

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars Al-ML Revolution Al-ML for Self-driving Cars

AI-ML Revolution: Applications

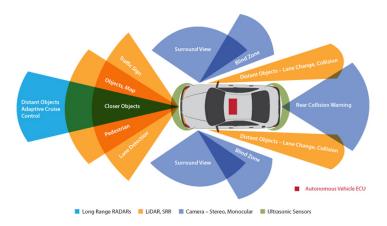

Dr. Ram Prasad Padhy

AI and Computer Vision for Autonomous Vehicles

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars Al-ML Revolution Al-ML for Self-driving Cars

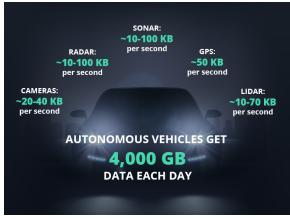
AI-ML Revolution: Self Driving Cars



Dr. Ram Prasad Padhy Al and Computer Vision for Autonomous Vehicles

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

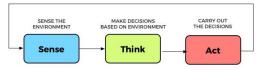
Self-Driving Cars Al-ML Revolution Al-ML for Self-driving Cars


AI-ML Revolution: Self Driving Cars

Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary

Self-Driving Cars AI-ML Revolution AI-ML for Self-driving Cars

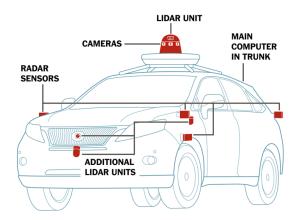
AI-ML for Self-driving Cars


Source:

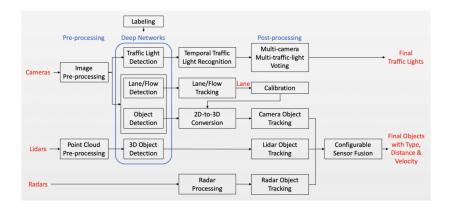
https://medium.com/analytics-vidhya/perception-in-self-driving-cars-7424e20b77c7

Camera LiDAR RADAR GPS and IMU

Situational Awareness in Self-driving Cars


- Commonly known as Perception
- How the car senses the environment around it
- Where is its location w.r.t others in the environment
- Sensors: Camera, Lidar, Radar, GPS, IMU etc.
- Huge amount of data
- Use the computer intelligence to evaluate data and make something meaning of it

Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary	Camera LiDAR RADAR GPS and IMU
Sensors	


- **Camera**: 2D object detection, semantic segmentation, Traffic light detection, lane-following etc.
- Lidar: 3D object detection, range estimation
- Radar: Velocity and range estimates
- GPS: Puts the AV in global frame of reference
- IMU: Provides the acceleration and gyroscope measurements
- Multi sensor Fusion: Camera+Lidar, Lidar+Radar etc.

Sensors

Camera LiDAR RADAR GPS and IMU

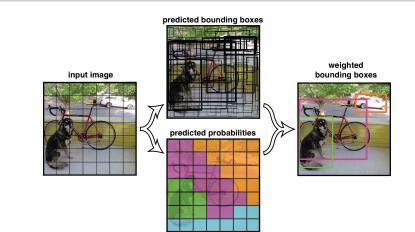
Situational Awareness Module

Camera

2D Object Detection

• Reads image data from the camera, and provides image-based object detection

Camera


GPS and IMU

- Popular Algorithms: R-CNN, SSD, and Yolo etc.
- Mostly Neural Network based
- Multiple classes of detection are supported, such as cars, trucks, bicycles, pedestrians, auto rickshaws, and many more

2D semantic Segmentation

- Pixel-wise classification is done for the whole image
- Each class is given a different color
- Mostly CNN based deep learning approaches are followed
- Semantic segmentation helps in free space detection, and thereby makes the safe trajectory estimation much easier for the AV

Camera


Camera

GPS and IMU

Dr. Ram Prasad Padhy Al and Computer Vision for Autonomous Vehicles

Camera LiDAR RADAR GPS and IMU

Camera

(a) 2D Object detection

(b) 2D Semantic Segmentation

Camera

Traffic Light Detection

- Detects the traffic light at traffic posts
- Classifies whether it is Green, Red or Yellow

Camera

Camera

Lane/Flow Detection

- Detects the derivable area
- Follows the lane
- Combined with 2D object detection and semantic segmentation

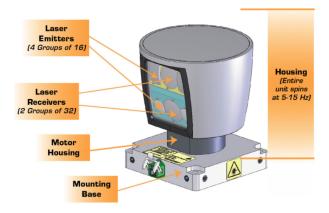
Camera

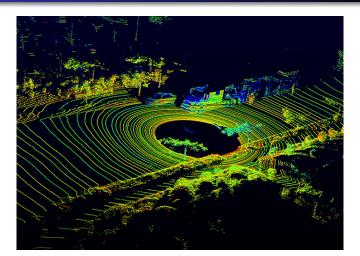
Camera

2D Object Tracking

Camera

- Takes the input from the 2D object Detection predictions
- Uses the algorithms, like Kalman Filtering
- Assigns a unique ID to each of the objects
- Helps in the measurement of kinematics parameters and trajectory prediction of the surrounding vehicles


Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary Camera LiDAR RADAR GPS and IMU


- Light Detection And Ranging
- Sends out very short light pulses at different angles across the field of view and receives the photons reflected back from an object
- It measures the time difference and determines the distance to the object
- It generates the point cloud with x, y, z coordinates in 3D

Camera LiDAR RADAR GPS and IMU

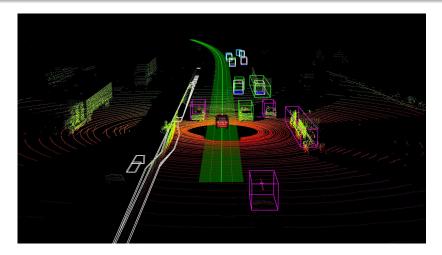
Lidar

Lidar

LIDAR

Lidar

3D Object Detection


- The 3D point cloud data from the Lidar sensor is passed through CNNs to detect 3D objects around the vehicle
- It detects the class of the objects (bus, truck, pedestrian etc.)

LIDAR

- It also estimates the position and dimension in 3D coordinate system along with the heading
- Requires heavy processing as compared to camera based object detection

Camera LiDAR RADAR GPS and IMU

Lidar

Dr. Ram Prasad Padhy AI and Computer Vision for Autonomous Vehicles

Lidar

3D Localization

- Creating an effective 3D map of the environment
- Memorizing the landmarks
- The vehicle knows its relative position w.r.t others in the environment

LIDAR

$$\begin{array}{cccc} world & \longrightarrow & map & \longrightarrow & base_link & \longrightarrow & velodyne \\ \\ \mbox{global coordinates} & & map coordinates & robot coordinates & lidar coordinates \end{array}$$

Lidar

LIDAR

- Radar is very efficient with a low cost and small footprint
- Capable to determine the targets at long range with accurate velocity and spatial information
- Its sensitivity in dark and poor weather conditions also helps to cover the domains where LiDAR or camera may fail
- Transmit electromagnetic waves, and receive reflected wave from targets
- Comparison with LiDAR:
 - **Pros:** Operates in the bad weathers, low-cost, accurate velocity detection
 - Cons: Lower resolution

Camera LiDAR RADAR GPS and IMU

GPS/GNSS and IMU

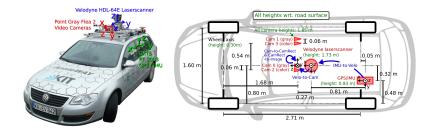
GPS/GNSS

- GPS: Global Positioning System
- GNSS: Global Navigation Satellite System
- Puts the AV in global frame of reference
- Helps in effective global localization

IMU

- Inertial Measurement Unit
- Provides the Acceleration and Gyroscope (Heading) data
- Can be combine with 3D object position and heading to measure the acceleration and gyroscope data of surrounding objects

Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion Datasets Demo Summary	Camera+LiDAR Fusion LiDAR+RADAR Fusion
Multi Sensor Fusion	

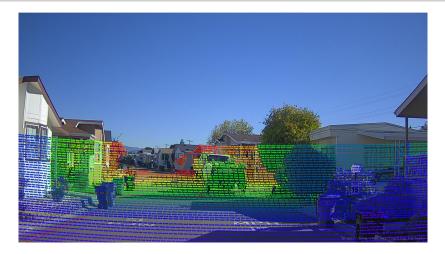

- Single-sensor approach is limited by the fact that each sensor has its own weakness in some situation.
- Combining data from multiple sources to increase the accuracy of prediction
- MSF can increase the accuracy of object detection as well as tracking
- Each sensor has its own frame of reference
- Needs to bring all to a common coordinate system
- External calibration is required

Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion

> Datasets Demo Summary

Camera+LiDAR Fusion LiDAR+RADAR Fusion

Multi Sensor Fusion



Introduction Situational Awareness in Self-driving Cars

Multi Sensor Fusion Ca

Datasets Demo Summary Camera+LiDAR Fusion LiDAR+RADAR Fusion

Camera+LiDAR Fusion

Dr. Ram Prasad Padhy Al and Computer Vision for Autonomous Vehicles

Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion

Datasets Li Demo Summary

Camera+LiDAR Fusion LiDAR+RADAR Fusion

Camera+LiDAR Fusion

3D Multi Object Tracking (MOT)

- MOT specifies tracking multiple objects simultaneously
- Generates the trajectory of different vehicles around the AV
- It requires the position sequence of objects for a period of time.
- Extended Kalman Filter or Unscented Kalman Filter are used to rectify the position of objects
- Unique ID is assigned to each of the identified objects in the scene.

Introduction Situational Awareness in Self-driving Cars

Multi Sensor Fusion

Datasets Demo Summary Camera+LiDAR Fusion LiDAR+RADAR Fusion

Camera+LiDAR Fusion

Dr. Ram Prasad Padhy Al and Computer Vision for Autonomous Vehicles

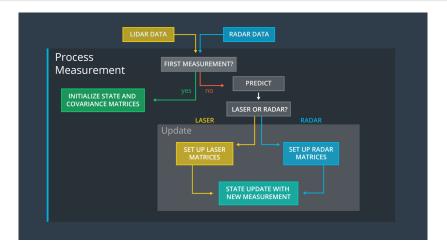
Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion

> Datasets Demo Summary

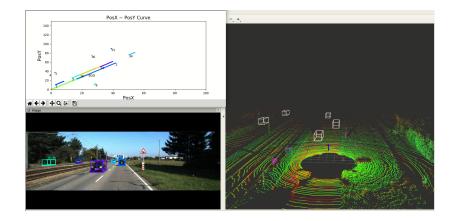
Camera+LiDAR Fusion LiDAR+RADAR Fusion

LiDAR+RADAR Fusion

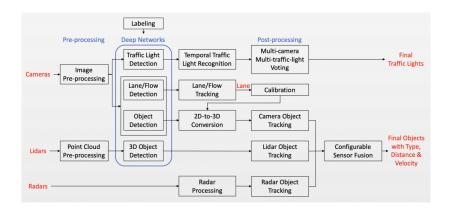
Kalman Filter


- Receives initial measurement of the obstacle's position relative to the ego vehicle
- Initialize the obstacle's position based on the first measurement
- Ego vehicle receives another measurement after a dt
- Estimates the obstacle's position after the dt using constant velocity model
- Predicted location and measured location are combined to give an updated location
- Kalman filter will put weight on them depending on the uncertainty of each value
- Loop over another measurement after dt and predict/update the location

Introduction Situational Awareness in Self-driving Cars Multi Sensor Fusion


or Fusion Camera+LiDAR Fusion Datasets LiDAR+RADAR Fusion

Demo Summary


LiDAR+RADAR Fusion

- KITTI, NuScenes, Waymo, ArgoVerse, A2D2, ApolloScape, DeepDrive, CityScapes, Comma2k19, Google-Landmarks, LeddarTech, Level 5 Open Data, Oxford Radar RobotCar Dataset, PandaSet, Udacity Self Driving Car Dataset *etc.*
- IDD Dataset: For Indian Scenarios
- **Challenges**: 2D Object detection/tracking, 3D Object detection/tracking, Lane following, Lidar and Image segmentation, Traffic Light Detection, Localization etc.

Summary

Acknowledgment

- Some of the data, slides, code and images have been adopted from different internet sources. I am very thankful to the authors of these sources. The due credits are acknowledged.
- The slides are prepared for educational purpose only.

Email: ramprasad@iitbbs.ac.in / ramprasad.nitr@gmail.com Profile link: link Internship, project researcher and Ph.D Positions are open throughout the year.